Non-commutative geometry and the spectral model of space-time

被引:0
|
作者
Connes, Alain [1 ]
机构
[1] Inst Hautes Etud Sci, F-91440 Bures Sur Yvette, France
来源
QUANTUM SPACES: POINCARE SEMINAR 2007 | 2007年 / 53卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is a report on our joint work with A. Chamseddine and M. Marcolli. This essay gives a short introduction to a potential application in physics of a new type of geometry based on spectral considerations which is convenient when dealing with non-commutative spaces, i.e., spaces in which the simplifying rule of commutativity is no longer applied to the coordinates. Starting from the phenomenological Lagrangian of gravity coupled with matter one infers, using the spectral action principle, that space-time admits a fine structure which is a subtle mixture of the usual 4-dimensional continuum with a finite discrete structure F. Under the (unrealistic) hypothesis that this structure remains valid (i.e., one does not have any "hyperfine" modification) until the unification scale, one obtains a number of predictions whose approximate validity is a basic test of the approach.
引用
收藏
页码:203 / 227
页数:25
相关论文
共 50 条
  • [1] The standard model on non-commutative space-time
    Calmet, X
    Jurco, B
    Schupp, P
    Wess, J
    Wohlgenannt, M
    EUROPEAN PHYSICAL JOURNAL C, 2002, 23 (02): : 363 - 376
  • [2] The standard model on non-commutative space-time
    X. Calmet
    B. Jurčo
    P. Schupp
    J. Wess
    M. Wohlgenannt
    The European Physical Journal C - Particles and Fields, 2002, 23 : 363 - 376
  • [3] Fuzzy spaces, non-commutative geometry and fermionic space-time
    Sidharth, BG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2002, 117 (06): : 703 - 710
  • [4] Non-commutative BTZ Space-time
    Maceda, Marco
    Macias, Alfredo
    RECENT DEVELOPMENTS ON PHYSICS IN STRONG GRAVITATIONAL FIELDS, 2014, 1577 : 236 - 239
  • [5] A test for non-commutative space-time
    Sidharth, BG
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2005, 14 (08): : 1247 - 1249
  • [6] Covariant non-commutative space-time
    Heckman, Jonathan J.
    Verlinde, Herman
    NUCLEAR PHYSICS B, 2015, 894 : 58 - 74
  • [7] Inflation on a non-commutative space-time
    Calmet, Xavier
    Fritz, Christopher
    PHYSICS LETTERS B, 2015, 747 : 406 - 409
  • [8] Exact discretization of non-commutative space-time
    Tarasov, V. E.
    MODERN PHYSICS LETTERS A, 2020, 35 (16)
  • [9] Non-commutative space-time and the uncertainty principle
    Carlen, E
    Mendes, RV
    PHYSICS LETTERS A, 2001, 290 (3-4) : 109 - 114
  • [10] Quantum mechanics and non-commutative space-time
    Mendes, RV
    PHYSICS LETTERS A, 1996, 210 (4-5) : 232 - 240