Asymptotic Behavior of Lotz-Rabiger and Martingale Nets

被引:5
作者
Emel'yanov, E. Yu. [1 ]
机构
[1] Middle E Tech Univ, TR-06531 Ankara, Turkey
关键词
Lotz-Rabiger net; martingale net; constrictor; DOMINATED SEMIGROUPS; POSITIVE OPERATORS; PERIODICITY; ERGODICITY; STABILITY;
D O I
10.1007/s11202-010-0081-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Theorem 1 (of convergence) in [1], we prove several results on LR- and M-nets by a unified approach to these nets that appear as the two extreme types of asymptotically abelian nets.
引用
收藏
页码:810 / 817
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1994, APPL MATH SCI
[2]  
[Anonymous], VLADIKAVKAZ MAT ZH
[3]   DOMINATION AND ERGODICITY FOR POSITIVE SEMIGROUPS [J].
ARENDT, W ;
BATTY, CJK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (03) :743-747
[5]  
Emel'yanov EY, 2010, REV ROUM MATH PURES, V55, P1
[6]   Positive operators on Banach spaces ordered by strongly normal cones [J].
Emel'yanov, EY ;
Wolff, MPH .
POSITIVITY, 2003, 7 (1-2) :3-22
[7]   Stability and almost periodicity of asymptotically dominated semigroups of positive operators [J].
Emel'yanov, EY ;
Kohler, U ;
Räbiger, F ;
Wolff, MPH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (09) :2633-2642
[8]  
Emelyanov E. Y., 2007, Oper. Theory Adv. Appl., V173
[9]  
Krengel U., 1985, ERGODIC THEOREMS, V6, DOI [10.1515/9783110844641, DOI 10.1515/9783110844641]
[10]   ASYMPTOTIC PERIODICITY OF THE ITERATES OF MARKOV OPERATORS [J].
LASOTA, A ;
LI, TY ;
YORKE, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 286 (02) :751-764