COMPLETE HYPERSURFACES WITH CONSTANT MEAN CURVATURE AND FINITE INDEX IN HYPERBOLIC SPACES

被引:0
作者
Deng Qintao [1 ,2 ,3 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Huazhong Normal Univ, Lab Nonlinear Anal, Wuhan 430079, Peoples R China
[3] Huazhong Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
k-weighted bi-Ricci curvature; finite index; constant mean curvature; RIEMANNIAN-MANIFOLDS; MINIMAL-SURFACES; STABILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we prove that any complete finite index hypersurface in the hyperbolic space H(4)(-1)(H(5)(-1)) with constant mean curvature H satisfying H(2) > 64/63 (H(2) > 175/148 respectively) must be compact. Specially, we verify that any complete and stable hypersurface in the hyperbolic space H(4)(-1) (resp. H(5)(-1)) with constant mean curvature H satisfying H(2) > 64/63 (resp. H(2) > 175/148) must be compact. It shows that there is no manifold satisfying the conditions of some theorems in [7, 9].
引用
收藏
页码:353 / 360
页数:8
相关论文
共 18 条
[1]  
Alencar H., 1994, An. Acad. Brasil. Cienc, V66, P265
[2]  
[Anonymous], INVENT MATH
[3]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[4]   Complete hypersurfaces with constant mean curvature and finite total curvature [J].
Berard, P ;
Do Carmo, M ;
Santos, W .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (03) :273-290
[5]  
Berard P., 1999, MAT CONT, V17, P77
[6]   L2 harmonic forms and stability of hypersurfaces with constant mean curvature [J].
Cheng, X .
BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA, 2000, 31 (02) :225-239
[7]   On constant mean curvature hypersurfaces with finite index [J].
Cheng, X .
ARCHIV DER MATHEMATIK, 2006, 86 (04) :365-374
[8]  
CHENG X, ARXIVMATH0602007V1MA
[9]   Stable constant mean curvature hypersurfaces in Rn+1 and Hn+1(-1) [J].
Cheung, LF ;
Zhou, DT .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2005, 36 (01) :99-114
[10]   STABILITY OF COMPLETE NONCOMPACT SURFACES WITH CONSTANT MEAN-CURVATURE [J].
DASILVEIRA, AM .
MATHEMATISCHE ANNALEN, 1987, 277 (04) :629-638