Integrated density of states for Poisson-Schrodinger perturbations of subordinate Brownian motions on the Sierpinski gasket

被引:9
作者
Kaleta, Kamil [1 ,2 ]
Pietruska-Paluba, Katarzyna [1 ]
机构
[1] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
[2] Wroclaw Univ Technol, Inst Math & Comp Sci, PL-50370 Wroclaw, Poland
关键词
Subordinate Brownian motion; Sierpinski gasket; Reflected process; Random Feynman-Kac semigroup; Schrodinger operator; Random potential; Kato class; Eigenvalues; Integrated density of states; NESTED FRACTALS; LIFSCHITZ TAIL; WIENER SAUSAGE; HARNACK INEQUALITY; HYPERBOLIC SPACE; D-SETS; PRINCIPLE; OPERATORS; CARPET;
D O I
10.1016/j.spa.2014.10.010
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of the integrated density of states for subordinate Brownian motions in the presence of the Poissonian random potentials on the Sierpinski gasket. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1244 / 1281
页数:38
相关论文
共 39 条
[1]  
Barlow M.T., 1998, Lecture notes Math, V1690, P1
[2]   Uniqueness of Brownian motion on Sierpinski carpets [J].
Barlow, Martin T. ;
Bass, Richard F. ;
Kumagai, Takashi ;
Teplyaev, Alexander .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (03) :655-701
[3]  
BARLOW MT, 1989, ANN I H POINCARE-PR, V25, P225
[4]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[5]  
Bertoin J., 1999, Ecole d'Ete de Probabilites de St. Flour XXVII, V1717, P4
[6]  
Bertoin Jean, 1998, Levy Processes
[7]   Harnack inequality for stable processes on d-sets [J].
Bogdan, K ;
Stós, A ;
Sztonyk, P .
STUDIA MATHEMATICA, 2003, 158 (02) :163-198
[8]   Boundary Potential Theory for Schrodinger Operators Based on Fractional Laplacian [J].
Bogdan, K. ;
Byczkowski, T. .
POTENTIAL ANALYSIS OF STABLE PROCESSES AND ITS EXTENSIONS, 2009, 1980 :25-55
[9]  
Bogdan K., 2014, T AM MATH S IN PRESS
[10]   Gaussian estimates for Schrodinger perturbations [J].
Bogdan, Krzysztof ;
Szczypkowski, Karol .
STUDIA MATHEMATICA, 2014, 221 (02) :151-173