Nonlinear dynamics from linear quantum evolutions

被引:7
作者
Ciaglia, F. M. [1 ]
Di Cosmo, F. [2 ,3 ]
Figueroa, A. [4 ]
Man'ko, V. I. [5 ,6 ]
Marmo, G. [4 ,7 ]
Schiavone, L. [8 ]
Ventriglia, F. [4 ,7 ]
Vitale, P. [4 ,7 ]
机构
[1] Max Planck Inst Math Nat Wissensch, Inselstr 22, D-04103 Leipzig, Germany
[2] Univ Carlos III Madrid, Dept Matemat, Ave Univ 30, Madrid 28911, Spain
[3] UAM, ICMAT, Inst Ciencias Matemat, CSIC,UC3M,UCM, Nicolas Cabrera 1315,Campus Cantoblanco, Madrid 28049, Spain
[4] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6, I-80126 Naples, Italy
[5] Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
[6] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Region, Russia
[7] Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6, I-80126 Naples, Italy
[8] Univ Ostrava, Fac Sci, Dept Math, 30 Dubna 22, CZ-70103 Ostrava, Czech Republic
关键词
Unitary maps; Quantum states; Lagrangian mechanics; Generalized coherent states; Classical-like maps; Unfolding; Reduction; Variational principles; COHERENT STATES; EVEN;
D O I
10.1016/j.aop.2019.167957
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear dynamics restricted to invariant submanifolds generally gives rise to nonlinear dynamics. Submanifolds in the quantum framework may emerge for several reasons: one could be interested in specific properties possessed by a given family of states, either as a consequence of experimental constraints or inside an approximation scheme. In this work we investigate such issues in connection with a one parameter group phi(t) of transformations on a Hilbert space, H, defining the unitary evolutions of a chosen quantum system. Two procedures will be presented: the first one consists in the restriction of the vector field associated with the Schrodinger equation to a submanifold invariant under the flow phi(t). The second one makes use of the Lagrangian formalism and can be extended also to non-invariant submanifolds, even if in such a case the resulting dynamics is only an approximation the flow phi(t). Such a result, therefore, should be conceived as a generalization of the variational method already employed for stationary problems. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 30 条
[1]  
Almaki F., 2019, ARXIV190303554V2
[2]  
Almaki F., 2018, J PHYS A, V52
[3]  
[Anonymous], 1981, Geometry of the Time-Dependent Variational Principle in Quantum Mechanics
[4]  
[Anonymous], 1963, PHYS REV LETT, V10
[5]   PHOTON STATISTICS OF MULTIMODE EVEN AND ODD COHERENT-LIGHT [J].
ANSARI, NA ;
MANKO, VI .
PHYSICAL REVIEW A, 1994, 50 (02) :1942-1945
[6]  
Balachandran A.P., 1983, LECT NOT PHYS, V188
[7]   Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles [J].
Carmeli, C ;
Cassinelli, G ;
Toigo, A ;
Varadarajan, VS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (01) :217-258
[8]   Dynamical aspects in the quantizer-dequantizer formalism [J].
Ciaglia, F. M. ;
Di Cosmo, F. ;
Ibort, A. ;
Marmo, G. .
ANNALS OF PHYSICS, 2017, 385 :769-781
[9]   EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR [J].
DODONOV, VV ;
MALKIN, IA ;
MANKO, VI .
PHYSICA, 1974, 72 (03) :597-615
[10]   GENERALIZED UNCERTAINTY RELATION AND CORRELATED COHERENT STATES [J].
DODONOV, VV ;
KURMYSHEV, EV ;
MANKO, VI .
PHYSICS LETTERS A, 1980, 79 (2-3) :150-152