Nonlinear dynamics from linear quantum evolutions

被引:7
作者
Ciaglia, F. M. [1 ]
Di Cosmo, F. [2 ,3 ]
Figueroa, A. [4 ]
Man'ko, V. I. [5 ,6 ]
Marmo, G. [4 ,7 ]
Schiavone, L. [8 ]
Ventriglia, F. [4 ,7 ]
Vitale, P. [4 ,7 ]
机构
[1] Max Planck Inst Math Nat Wissensch, Inselstr 22, D-04103 Leipzig, Germany
[2] Univ Carlos III Madrid, Dept Matemat, Ave Univ 30, Madrid 28911, Spain
[3] UAM, ICMAT, Inst Ciencias Matemat, CSIC,UC3M,UCM, Nicolas Cabrera 1315,Campus Cantoblanco, Madrid 28049, Spain
[4] Ist Nazl Fis Nucl, Sez Napoli, Complesso Univ Monte S Angelo Edificio 6, I-80126 Naples, Italy
[5] Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
[6] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Region, Russia
[7] Univ Napoli Federico II, Dipartimento Fis E Pancini, Complesso Univ Monte S Angelo Edificio 6, I-80126 Naples, Italy
[8] Univ Ostrava, Fac Sci, Dept Math, 30 Dubna 22, CZ-70103 Ostrava, Czech Republic
关键词
Unitary maps; Quantum states; Lagrangian mechanics; Generalized coherent states; Classical-like maps; Unfolding; Reduction; Variational principles; COHERENT STATES; EVEN;
D O I
10.1016/j.aop.2019.167957
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Linear dynamics restricted to invariant submanifolds generally gives rise to nonlinear dynamics. Submanifolds in the quantum framework may emerge for several reasons: one could be interested in specific properties possessed by a given family of states, either as a consequence of experimental constraints or inside an approximation scheme. In this work we investigate such issues in connection with a one parameter group phi(t) of transformations on a Hilbert space, H, defining the unitary evolutions of a chosen quantum system. Two procedures will be presented: the first one consists in the restriction of the vector field associated with the Schrodinger equation to a submanifold invariant under the flow phi(t). The second one makes use of the Lagrangian formalism and can be extended also to non-invariant submanifolds, even if in such a case the resulting dynamics is only an approximation the flow phi(t). Such a result, therefore, should be conceived as a generalization of the variational method already employed for stationary problems. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:27
相关论文
共 30 条
  • [1] Almaki F., 2019, ARXIV190303554V2
  • [2] Almaki F., 2018, J PHYS A, V52
  • [3] [Anonymous], 1981, Geometry of the Time-Dependent Variational Principle in Quantum Mechanics
  • [4] [Anonymous], 1963, PHYS REV LETT, V10
  • [5] PHOTON STATISTICS OF MULTIMODE EVEN AND ODD COHERENT-LIGHT
    ANSARI, NA
    MANKO, VI
    [J]. PHYSICAL REVIEW A, 1994, 50 (02): : 1942 - 1945
  • [6] Balachandran A.P., 1983, LECT NOT PHYS, V188
  • [7] Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles
    Carmeli, C
    Cassinelli, G
    Toigo, A
    Varadarajan, VS
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (01) : 217 - 258
  • [8] Dynamical aspects in the quantizer-dequantizer formalism
    Ciaglia, F. M.
    Di Cosmo, F.
    Ibort, A.
    Marmo, G.
    [J]. ANNALS OF PHYSICS, 2017, 385 : 769 - 781
  • [9] EVEN AND ODD COHERENT STATES AND EXCITATIONS OF A SINGULAR OSCILLATOR
    DODONOV, VV
    MALKIN, IA
    MANKO, VI
    [J]. PHYSICA, 1974, 72 (03): : 597 - 615
  • [10] GENERALIZED UNCERTAINTY RELATION AND CORRELATED COHERENT STATES
    DODONOV, VV
    KURMYSHEV, EV
    MANKO, VI
    [J]. PHYSICS LETTERS A, 1980, 79 (2-3) : 150 - 152