Link invariants and combinatorial quantization of Hamiltonian Chern Simons theory

被引:21
作者
Buffenoir, E
Roche, P
机构
[1] Ctr. de Phys. Theor. Ecl. Polytech.
关键词
D O I
10.1007/BF02101008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define and study the properties of observables associated to any link in Sigma xR (where Sigma is a compact surface) using the combinatorial quantization of hamiltonian Chem-Simons theory. These observables are traces of holonomies in a non-commutative Yang-Mills theory where the gauge symmetry is ensured by a quantum group. We show that these observables are link invariants taking values in a non-commutative algebra, the so-called Moduli Algebra. When Sigma=S-2 these link invariants are pure numbers and are equal to Reshetikhin-Turaev link invariants.
引用
收藏
页码:331 / 365
页数:35
相关论文
共 22 条
[1]  
ALEKSEEV AY, 1994, COMBINATORIAL QUANTI, V1
[2]  
ALEKSEEV AY, 1994, COMBINATORIAL QUANTI, V2
[3]  
Alekseev AY., 1995, REPRESENTATION THEOR
[4]  
ANDERSEN JE, 1995, IN PRESS POISSON STR
[5]  
ANDERSEN JE, 1995, UNPUB QUANTIZATION M
[6]  
AXELROD S, 1992, P 20 INT C DIFF GEOM
[7]  
BAEZ J, OXFORD LECT SERIES M, V1
[8]  
BARNATAN D, 1995, TOPOLOGY, V34
[9]  
BUFFENOIR E, IN PRESS CHERNSIMONS
[10]  
BUFFENOIR E, 1995, COMMUN MATH PHYS, V170