Oxygen reduction and evolution reactions of air electrodes using a perovskite oxide as an electrocatalyst

被引:34
作者
Nishio, Koji [1 ]
Molla, Sergio [1 ]
Okugaki, Tomohiko [1 ]
Nakanishi, Shinji [2 ]
Nitta, Iwao [2 ]
Kotani, Yukinari [2 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Nishikyo Ku, Kyoto 6158510, Japan
[2] Toyota Motor Co Ltd, Battery Res Div, Shizuoka 4101193, Japan
关键词
Air electrode; Oxygen reduction reaction; Oxygen evolution reaction; Perovskite; Electrocatalyst; PT/C CATALYTIC CATHODE; DURABILITY ENHANCEMENT; CARBON SUPPORT; BATTERIES; LA0.6CA0.4COO3; COMPOSITES; PEMFC;
D O I
10.1016/j.jpowsour.2014.12.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) of air electrodes consisting of La0.5Sr0.5CoO3 and/or carbon in the electrocatalyst layer are studied by using two types of gas diffusion electrodes. Cyclic voltammetry and square wave voltammetry studies reveal very low ORR activity of carbon-free perovskite and remarkably enhanced ORR of perovskite-carbon composites. The ORR current density at -0.5 V vs. Hg/HgO is higher than 200 mA cm(-2) in a wide range of perovskite-carbon composition, suggesting good peroxide reducing capability of the perovskite. The ORR mechanisms of perovskite-carbon composites are consistent with the 2+2-electron mechanisms. The ORR and OER properties of perovskite-carbon composite electrodes are significantly influenced by the carbon species. The electrode exhibits a higher ORR current density, but inferior cycling performances when a carbon material with a higher specific surface area is used, and vice versa. Under a current density of 20 mA cm(-2) and ORR and OER durations of 30 min, a gas diffusion type electrode consists of La0.5Sr0.5CoO3 and a low surface area carbon are capable of more than 150 cycles. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:645 / 651
页数:7
相关论文
共 38 条
[1]   AC impedance analysis of bifunctional air electrodes for metal-air batteries [J].
Arai, H ;
Müller, S ;
Haas, O .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (10) :3584-3591
[2]   La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes [J].
Bursell, M ;
Pirjamali, M ;
Kiros, Y .
ELECTROCHIMICA ACTA, 2002, 47 (10) :1651-1660
[3]   Air-metal hydride secondary battery with long cycle life [J].
Chartouni, D ;
Kuriyama, N ;
Kiyobayashi, T ;
Chen, J .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 330 :766-770
[4]   Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts [J].
Cheng, Fangyi ;
Chen, Jun .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (06) :2172-2192
[5]   DISTINCTION BETWEEN INTERMEDIATES PRODUCED IN MAIN AND SIDE ELECTRODIC REACTIONS [J].
DAMJANOVIC, A ;
GENSHAW, MA ;
BOCKRIS, JO .
JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (11) :4057-+
[6]   Electrocatalytic performances of LaNi1-xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries [J].
Du, Zhenzhen ;
Yang, Peng ;
Wang, Long ;
Lu, Yuhao ;
Goodenough, J. B. ;
Zhang, Jian ;
Zhang, Dawei .
JOURNAL OF POWER SOURCES, 2014, 265 :91-96
[7]   Electrochemical evaluation of La1-aEuroparts per thousandx Ca x CoO3 cathode material for zinc air batteries application [J].
Eom, Seung-Wook ;
Ahn, Se-Young ;
Kim, Ik-Jun ;
Sun, Yang-Kook ;
Kim, Hyun-Soo .
JOURNAL OF ELECTROCERAMICS, 2009, 23 (2-4) :382-386
[8]   Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal-Air Battery Electrodes [J].
Hardin, William G. ;
Slanac, Daniel A. ;
Wang, Xiqing ;
Dai, Sheng ;
Johnston, Keith P. ;
Stevenson, Keith J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (08) :1254-1259
[9]   Reverse micelle assisted dispersion of lanthanum manganite on carbon support for oxygen reduction cathode [J].
Hayashi, M ;
Uemura, H ;
Shimanoe, K ;
Miura, N ;
Yamazoe, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (01) :A158-A163
[10]   Electrochemical oxygen reduction properties of perovskite-type oxides La1-xAxMnO3 (A = Na, K, Rb) in concentrated alkaline solution [J].
Hayashi, M ;
Hyodo, T ;
Miura, N ;
Yamazoe, N .
ELECTROCHEMISTRY, 2000, 68 (02) :112-118