Network-Based Matching of Patients and Targeted Therapies for Precision Oncology

被引:0
作者
Liu, Qingzhi [1 ]
Ha, Min Jin [3 ]
Bhattacharyya, Rupam [1 ]
Garmire, Lana [2 ]
Baladandayuthapani, Veerabhadran [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ Texas MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
来源
PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020 | 2020年
关键词
network analysis; drug response prediction; functional proteomics; precision oncology; CANCER-CELL-LINES; LUNG-CANCER; DRUG-SENSITIVITY; RESOURCE; GROWTH;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The extensive acquisition of high-throughput molecular profiling data across model systems (human tumors and cancer cell lines) and drug sensitivity data, makes precision oncology possible - allowing clinicians to match the right drug to the right patient. Current supervised models for drug sensitivity prediction, often use cell lines as exemplars of patient tumors and for model training. However, these models are limited in their ability to accurately predict drug sensitivity of individual cancer patients to a large set of drugs, given the paucity of patient drug sensitivity data used for testing and high variability across different drugs. To address these challenges, we developed a multilayer network-based approach to impute individual patients' responses to a large set of drugs. This approach considers the triplet of patients, cell lines and drugs as one inter-connected holistic system. We first use the omics profiles to construct a patient-cell line network and determine best matching cell lines for patient tumors based on robust measures of network similarity. Subsequently, these results are used to impute the "missing link" between each individual patient and each drug, called Personalized Imputed Drug Sensitivity Score (PIDS-Score), which can be construed as a measure of the therapeutic potential of a drug or therapy. We applied our method to two subtypes of lung cancer patients, matched these patients with cancer cell lines derived from 19 tissue types based on their functional proteomics profiles, and computed their PIDS-Scores to 251 drugs and experimental compounds. We identified the best representative cell lines that conserve lung cancer biology and molecular targets. The PIDS-Score based top sensitive drugs for the entire patient cohort as well as individual patients are highly related to lung cancer in terms of their targets, and their PIDS-Scores are significantly associated with patient clinical outcomes. These findings provide evidence that our method is useful to narrow the scope of possible effective patient-drug matchings for implementing evidence-based personalized medicine strategies.
引用
收藏
页码:623 / 634
页数:12
相关论文
共 31 条
  • [11] Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics
    Goodspeed, Andrew
    Heiser, Laura M.
    Gray, Joe W.
    Costello, James C.
    [J]. MOLECULAR CANCER RESEARCH, 2016, 14 (01) : 3 - 13
  • [12] Wavelets on graphs via spectral graph theory
    Hammond, David K.
    Vandergheynst, Pierre
    Gribonval, Remi
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2011, 30 (02) : 129 - 150
  • [13] Hastie Trever., 1999, Stanford University Statistics Department Technical report
  • [14] Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin
    Hoadley, Katherine A.
    Yau, Christina
    Wolf, Denise M.
    Cherniack, Andrew D.
    Tamborero, David
    Ng, Sam
    Leiserson, Max D. M.
    Niu, Beifang
    McLellan, Michael D.
    Uzunangelov, Vladislav
    Zhang, Jiashan
    Kandoth, Cyriac
    Akbani, Rehan
    Shen, Hui
    Omberg, Larsson
    Chu, Andy
    Margolin, Adam A.
    van't Veer, Laura J.
    Lopez-Bigas, Nuria
    Laird, Peter W.
    Raphael, Benjamin J.
    Ding, Li
    Robertson, A. Gordon
    Byers, Lauren A.
    Mills, Gordon B.
    Weinstein, John N.
    Van Waes, Carter
    Chen, Zhong
    Collisson, Eric A.
    Benz, Christopher C.
    Perou, Charles M.
    Stuart, Joshua M.
    Abbott, Rachel
    Abbott, Scott
    Aksoy, B. Arman
    Aldape, Kenneth
    Ally, Adrian
    Amin, Samirkumar
    Anastassiou, Dimitris
    Auman, J. Todd
    Baggerly, Keith A.
    Balasundaram, Miruna
    Balu, Saianand
    Baylin, Stephen B.
    Benz, Stephen C.
    Berman, Benjamin P.
    Bernard, Brady
    Bhatt, Ami S.
    Birol, Inanc
    Black, Aaron D.
    [J]. CELL, 2014, 158 (04) : 929 - 944
  • [15] International network of cancer genome projects
    Hudson, Thomas J.
    Anderson, Warwick
    Aretz, Axel
    Barker, Anna D.
    Bell, Cindy
    Bernabe, Rosa R.
    Bhan, M. K.
    Calvo, Fabien
    Eerola, Iiro
    Gerhard, Daniela S.
    Guttmacher, Alan
    Guyer, Mark
    Hemsley, Fiona M.
    Jennings, Jennifer L.
    Kerr, David
    Klatt, Peter
    Kolar, Patrik
    Kusuda, Jun
    Lane, David P.
    Laplace, Frank
    Lu, Youyong
    Nettekoven, Gerd
    Ozenberger, Brad
    Peterson, Jane
    Rao, T. S.
    Remacle, Jacques
    Schafer, Alan J.
    Shibata, Tatsuhiro
    Stratton, Michael R.
    Vockley, Joseph G.
    Watanabe, Koichi
    Yang, Huanming
    Yuen, Matthew M. F.
    Knoppers, M.
    Bobrow, Martin
    Cambon-Thomsen, Anne
    Dressler, Lynn G.
    Dyke, Stephanie O. M.
    Joly, Yann
    Kato, Kazuto
    Kennedy, Karen L.
    Nicolas, Pilar
    Parker, Michael J.
    Rial-Sebbag, Emmanuelle
    Romeo-Casabona, Carlos M.
    Shaw, Kenna M.
    Wallace, Susan
    Wiesner, Georgia L.
    Zeps, Nikolajs
    Lichter, Peter
    [J]. NATURE, 2010, 464 (7291) : 993 - 998
  • [16] A Landscape of Pharmacogenomic Interactions in Cancer
    Iorio, Francesco
    Knijnenburg, Theo A.
    Vis, Daniel J.
    Bignell, Graham R.
    Menden, Michael P.
    Schubert, Michael
    Aben, Nanne
    Goncalves, Emanuel
    Barthorpe, Syd
    Lightfoot, Howard
    Cokelaer, Thomas
    Greninger, Patricia
    van Dyk, Ewald
    Chang, Han
    de Silva, Heshani
    Heyn, Holger
    Deng, Xianming
    Egan, Regina K.
    Liu, Qingsong
    Mironenko, Tatiana
    Mitropoulos, Xeni
    Richardson, Laura
    Wang, Jinhua
    Zhang, Tinghu
    Moran, Sebastian
    Sayols, Sergi
    Soleimani, Maryam
    Tamborero, David
    Lopez-Bigas, Nuria
    Ross-Macdonald, Petra
    Esteller, Manel
    Gray, Nathanael S.
    Haber, Daniel A.
    Stratton, Michael R.
    Benes, Cyril H.
    Wessels, Lodewyk F. A.
    Saez-Rodriguez, Julio
    McDermott, Ultan
    Garnett, Mathew J.
    [J]. CELL, 2016, 166 (03) : 740 - 754
  • [17] Adjusting batch effects in microarray expression data using empirical Bayes methods
    Johnson, W. Evan
    Li, Cheng
    Rabinovic, Ariel
    [J]. BIOSTATISTICS, 2007, 8 (01) : 118 - 127
  • [18] Explore, Visualize, and Analyze Functional Cancer Proteomic Data Using the Cancer Proteome Atlas
    Li, Jun
    Akbani, Rehan
    Zhao, Wei
    Lu, Yiling
    Weinstein, John N.
    Mills, Gordon B.
    Liang, Han
    [J]. CANCER RESEARCH, 2017, 77 (21) : E51 - E54
  • [19] Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays
    Li, Jun
    Zhao, Wei
    Akbani, Rehan
    Liu, Wenbin
    Ju, Zhenlin
    Ling, Shiyun
    Vellano, Christopher P.
    Roebuck, Paul
    Yu, Qinghua
    Eterovic, A. Karina
    Byers, Lauren A.
    Davies, Michael A.
    Deng, Wanleng
    Gopal, Y. N. Vashisht
    Chen, Guo
    von Euw, Erika M.
    Slamon, Dennis
    Conklin, Dylan
    Heymach, John V.
    Gazdar, Adi F.
    Minna, John D.
    Myers, Jeffrey N.
    Lu, Yiling
    Mills, Gordon B.
    Liang, Han
    [J]. CANCER CELL, 2017, 31 (02) : 225 - 239
  • [20] Li J, 2013, NAT METHODS, V10, P1046, DOI [10.1038/NMETH.2650, 10.1038/nmeth.2650]