Toward polymer upcycling-adding value and tackling circularity

被引:465
作者
Korley, LaShanda T. J. [1 ,2 ,3 ,4 ]
Epps, Thomas H., II [1 ,2 ,3 ,4 ]
Helms, Brett A. [5 ,6 ]
Ryan, Anthony J. [7 ,8 ]
机构
[1] Univ Delaware, Ctr Plast Innovat, Newark, DE 19716 USA
[2] Univ Delaware, Ctr Res Soft Matter & Polymers, Newark, DE 19716 USA
[3] Univ Delaware, Dept Chem & Bimol Engn, Newark, DE 19716 USA
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[5] Lawrence Berkeley Natl Lab, Mol Foundry, Mat Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Chem Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[7] Univ Sheffield, Grantham Ctr Sustainable Futures, Sheffield S3 7HF, S Yorkshire, England
[8] Univ Sheffield, Dept Chem, Sheffield S3 7HF, S Yorkshire, England
基金
美国国家科学基金会;
关键词
PLASTICS; FUTURE; WASTE; CHALLENGES;
D O I
10.1126/science.abg4503
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plastics have revolutionized modern life, but have created a global waste crisis driven by our reliance and demand for low-cost, disposable materials. New approaches are vital to address challenges related to plastics waste heterogeneity, along with the property reductions induced by mechanical recycling. Chemical recycling and upcycling of polymers may enable circularity through separation strategies, chemistries that promote closed-loop recycling inherent to macromolecular design, and transformative processes that shift the life-cycle landscape. Polymer upcycling schemes may enable lower-energy pathways and minimal environmental impacts compared with traditional mechanical and chemical recycling. The emergence of industrial adoption of recycling and upcycling approaches is encouraging, solidifying the critical role for these strategies in addressing the fate of plastics and driving advances in next-generation materials design.
引用
收藏
页码:66 / 69
页数:4
相关论文
共 39 条
[1]  
[Anonymous], 2021, NATURE, V590, P363
[2]   100th Anniversary of Macromolecular Science Viewpoint: Needs for Plastics Packaging Circularity [J].
Billiet, Stijn ;
Trenor, Scott R. .
ACS MACRO LETTERS, 2020, 9 (09) :1376-1390
[3]   The Chinese import ban and its impact on global plastic waste trade [J].
Brooks, Amy L. ;
Wang, Shunli ;
Jambeck, Jenna R. .
SCIENCE ADVANCES, 2018, 4 (06)
[4]   Plastics as a materials system in a circular economy [J].
Bucknall, David G. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2176)
[5]  
Cecchin A, 2021, Circular Economy and Sustainability, V1, P83, DOI DOI 10.1007/S43615-021-00021-4
[6]   Selective, Catalytic Oxidations of C-H Bonds in Polyethylenes Produce Functional Materials with Enhanced Adhesion [J].
Chen, Liye ;
Malollari, Katerina G. ;
Uliana, Adam ;
Sanchez, Daniel ;
Messersmith, Phillip B. ;
Hartwig, John F. .
CHEM, 2021, 7 (01) :137-145
[7]   Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds [J].
Christensen, Peter R. ;
Scheuermann, Angelique M. ;
Loeffler, Kathryn E. ;
Helms, Brett A. .
NATURE CHEMISTRY, 2019, 11 (05) :442-448
[8]   Chemical recycling to monomer for an ideal, circular polymer economy [J].
Coates, Geoffrey W. ;
Getzler, Yutan D. Y. L. .
NATURE REVIEWS MATERIALS, 2020, 5 (07) :501-516
[9]  
Corbin T.F., 1992, US, Patent No. [5,169,870, 5169870]
[10]   A recycler's perspective on the implications of REACH and food contact material (FCM) regulations for the mechanical recycling of FCM plastics [J].
De Tandt, Ellen ;
Demuytere, Cody ;
Van Asbroeck, Elke ;
Moerman, Hiram ;
Mys, Nicolas ;
Vyncke, Gianni ;
Delva, Laurens ;
Vermeulen, An ;
Ragaert, Peter ;
De Meester, Steven ;
Ragaert, Kim .
WASTE MANAGEMENT, 2021, 119 :315-329