Magnetic vortex filament flows

被引:139
作者
Barros, Manuel [1 ]
Cabrerizo, Jose L.
Fernandez, Manuel
Romero, Alfonso
机构
[1] Univ Granada, Fac Ciencias, Dept Geometria & Topol, E-18071 Granada, Spain
[2] Univ Seville, Fac Matemat, Dept Geometria & Topol, E-41012 Seville, Spain
关键词
D O I
10.1063/1.2767535
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We exhibit a variational approach to study the magnetic flow associated with a Killing magnetic field in dimension 3. In this context, the solutions of the Lorentz force equation are viewed as Kirchhoff elastic rods and conversely. This provides an amazing connection between two apparently unrelated physical models and, in particular, it ties the classical elastic theory with the Hall effect. Then, these magnetic flows can be regarded as vortex filament flows within the localized induction approximation. The Hasimoto transformation can be used to see the magnetic trajectories as solutions of the cubic nonlinear Schrodinger equation showing the solitonic nature of those.
引用
收藏
页数:27
相关论文
共 30 条
[11]   SOLITON ON A VORTEX FILAMENT [J].
HASIMOTO, H .
JOURNAL OF FLUID MECHANICS, 1972, 51 (FEB8) :477-&
[12]   Knot types, homotopies and stability of closed elastic rods [J].
Ivey, TA ;
Singer, DA .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1999, 79 :429-450
[13]   Kirchhoff elastic rods in the three-sphere [J].
Kawakubo, S .
TOHOKU MATHEMATICAL JOURNAL, 2004, 56 (02) :205-235
[14]  
KAZDAN JL, 1985, REGIONAL C SERIES MA, V57
[15]   A VORTEX FILAMENT MOVING WITHOUT CHANGE OF FORM [J].
KIDA, S .
JOURNAL OF FLUID MECHANICS, 1981, 112 (NOV) :397-409
[16]  
Kobayashi S., 1956, TOHOKU MATH J, V8, P29
[17]  
Landau LD, 1976, COURSE THEORETICAL P, V1
[18]  
LANGER J, 1984, J DIFFER GEOM, V20, P1
[19]   KNOTTED ELASTIC CURVES IN R3 [J].
LANGER, J ;
SINGER, DA .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 30 (DEC) :512-520
[20]  
LANGER J, 1996, SIAM REV, V38, P1