Revisiting Rademacher's formula for the partition function p(n)

被引:7
作者
Pribitkin, WD [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
partitions; modular forms; Fourier coefficients;
D O I
10.1023/A:1009828302300
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a new proof of Rademacher's celebrated exact formula for the partition function. Along the way we present a simple treatment of an integral which is ubiquitous in the theory of nonanalytic automorphic forms.
引用
收藏
页码:455 / 467
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1989, P S PURE MATH
[2]  
Dedekind R., 1877, J REINE ANGEW MATH, V83, P265
[3]   KLOOSTERMAN SUMS AND FOURIER COEFFICIENTS OF CUSP FORMS [J].
DESHOUILLERS, JM ;
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1982, 70 (02) :219-288
[4]  
Hardy GH, 1918, P LOND MATH SOC, V17, P75
[5]  
HECKE E, 1959, MATH WERKE, P461
[6]  
Hejhal D.A., 1983, The Selberg trace formula for PSL(2,R), V2, P1001
[7]   ON THE FOURIER COEFFICIENTS OF SMALL POSITIVE POWERS OF THETA-(TAU) [J].
KNOPP, MI .
INVENTIONES MATHEMATICAE, 1986, 85 (01) :165-183
[8]   PETERSSON CONJECTURE FOR CUSP FORMS OF WEIGHT ZERO AND LINNIK CONJECTURE - SUMS OF KLOOSTERMAN SUMS [J].
KUZNECOV, NV .
MATHEMATICS OF THE USSR-SBORNIK, 1981, 39 (03) :299-342
[9]   CONSTRUCTION OF AUTOMORPHIC FORMS AND INTEGRALS [J].
NIEBUR, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 191 (464) :373-385
[10]  
Pribitkin WD, 2000, ACTA ARITH, V93, P343