A Schanuel property for exponentially transcendental powers

被引:9
作者
Bays, Martin [1 ]
Kirby, Jonathan [1 ]
Wilkie, A. J. [2 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/blms/bdq054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the analogue of Schanuel's conjecture for raising to the power of an exponentially transcendental real number. All but countably many real numbers are exponentially transcendental. We also give a more general result for several powers in a context which encompasses the complex case.
引用
收藏
页码:917 / 922
页数:6
相关论文
共 4 条
[1]   SCHANUELS CONJECTURES [J].
AX, J .
ANNALS OF MATHEMATICS, 1971, 93 (02) :252-&
[2]   Locally polynomially bounded structures [J].
Jones, G. O. ;
Wilkie, A. J. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :239-248
[3]   Exponential algebraicity in exponential fields [J].
Kirby, Jonathan .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 :879-890
[4]  
LANG S, 1993, ALGEBRA