A Thermodynamic Modelling of the Stability of Sigma Phase in the Cr-Fe-Ni-V High-Entropy Alloy System

被引:38
作者
Choi, Won-Mi [1 ]
Jo, Yong Hee [1 ]
Kim, Dong Geun [1 ]
Sohn, Seok Su [1 ]
Lee, Sunghak [1 ]
Lee, Byeong-Joo [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
CALPHAD; Cr-Fe-Ni-V; high-entropy alloy; sigma phase; thermodynamic modelling; DESIGN;
D O I
10.1007/s11669-018-0672-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The addition of vanadium (V) to the representative Co-Cr-Fe-Mn-Ni high-entropy alloy (HEA) system is attracting attention expecting a large solid solution hardening effect. For the design of V-added HEAs, prediction of the sigma (sigma) phase formation has been mainly issued because it affects a significant influence on the mechanical properties. Although the CALculation of PHAse Diagram (CALPHAD) approach can be a good tool for prediction of phase structures, robust thermodynamic database is still required for an accurate prediction of V-added HEA systems. The present work aims at providing a thermodynamic description for the Cr-Fe-Ni-V HEA system, focusing on the thermodynamic stability of the sigma phase. A parameterization technique which minimizes the number of fitting parameter and simplifies the extension into higher-order systems is proposed and applied to the sigma phase with multiple sublattice during modelling the Cr-Ni-V and Fe-Ni-V systems. The reliability of the developed thermodynamic description for the Cr-Fe-Ni-V quaternary system is experimentally confirmed by designing, fabricating and analysing the phase structures of a series of Cr-Fe-Ni-V HEAs.
引用
收藏
页码:694 / 701
页数:8
相关论文
共 34 条
[1]   THERMODYNAMIC PROPERTIES OF THE CR-FE SYSTEM [J].
ANDERSSON, JO ;
SUNDMAN, B .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1987, 11 (01) :83-92
[2]  
Byeong-Joo Lee, 1993, Journal of the Korean Institute of Metals and Materials, V31, P480
[3]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[4]   Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels [J].
Chin, Kwang-Geun ;
Lee, Hyuk-Joong ;
Kwak, Jai-Hyun ;
Kang, Jung-Yoon ;
Lee, Byeong-Joo .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 505 (01) :217-223
[5]   Design of new face-centered cubic high entropy alloys by thermodynamic calculation [J].
Choi, Won-Mi ;
Jung, Seungmun ;
Jo, Yong Hee ;
Lee, Sunghak ;
Lee, Byeong-Joo .
METALS AND MATERIALS INTERNATIONAL, 2017, 23 (05) :839-847
[6]   SGTE DATA FOR PURE ELEMENTS [J].
DINSDALE, AT .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1991, 15 (04) :317-425
[7]   Tensile properties of high- and medium-entropy alloys [J].
Gali, A. ;
George, E. P. .
INTERMETALLICS, 2013, 39 :74-78
[8]   A fracture-resistant high-entropy alloy for cryogenic applications [J].
Gludovatz, Bernd ;
Hohenwarter, Anton ;
Catoor, Dhiraj ;
Chang, Edwin H. ;
George, Easo P. ;
Ritchie, Robert O. .
SCIENCE, 2014, 345 (6201) :1153-1158
[9]   Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J].
Guo, Sheng ;
Ng, Chun ;
Lu, Jian ;
Liu, C. T. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (10)
[10]   MODEL FOR ALLOYING EFFECTS IN FERROMAGNETIC METALS [J].
HILLERT, M ;
JARL, M .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1978, 2 (03) :227-238