ZIF-8@ZIF-67-Derived Nitrogen-Doped Porous Carbon Confined CoP Polyhedron Targeting Superior Potassium-Ion Storage

被引:173
作者
Yi, Yuyang [1 ]
Zhao, Wen [2 ]
Zeng, Zhihan [1 ]
Wei, Chaohui [1 ]
Lu, Chen [1 ,3 ]
Shao, Yuanlong [4 ]
Guo, Wenyue [2 ]
Dou, Shixue [3 ]
Sun, Jingyu [1 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat SIEMIS, Jiangsu Prov Key Lab Adv Carbon Mat & Wearable En, Coll Energy, Suzhou 215006, Peoples R China
[2] China Univ Petr, Sch Mat Sci & Engn, Qingdao 266580, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[4] King Abdullah Univ Sci & Technol, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金;
关键词
CoP nanoparticles; nitrogen doping; potassium ion batteries; potassium ion storage; ZIF-8@ZIF-67; METAL-ORGANIC FRAMEWORKS; GRAPHENE SHEETS; ELECTRODES; BATTERIES; EFFICIENT; ANODES;
D O I
10.1002/smll.201906566
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potassium ion batteries (KIB) have become a compelling energy-storage system owing to their cost effectiveness and the high abundance of potassium in comparison with lithium. However, its practical applications have been thwarted by a series of challenges, including marked volume expansion and sluggish reaction kinetics caused by the large radius of potassium ions. In line with this, the exploration of reliable anode materials affording high electrical conductivity, sufficient active sites, and structural robustness is the key. The synthesis of ZIF-8@ZIF-67 derived nitrogen-doped porous carbon confined CoP polyhedron architectures (NC@CoP/NC) to function as innovative KIB anode materials is reported. Such composites enable an outstanding rate performance to harvest a capacity of approximate to 200 mAh g(-1) at 2000 mA g(-1). Additionally, a high cycling stability can be gained by maintaining a high capacity retention of 93% after 100 cycles at 100 mA g(-1). Furthermore, the potassium ion storage mechanism of the NC@CoP/NC anode is systematically probed through theoretical simulations and experimental characterization. This contribution may offer an innovative and feasible route of emerging anode design toward high performance KIBs.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Micron-Sized Nanoporous Antimony with Tunable Porosity for High-Performance Potassium-Ion Batteries [J].
An, Yongling ;
Tian, Yuan ;
Ci, Lijie ;
Xiong, Shenglin ;
Feng, Jinkui ;
Qian, Yitai .
ACS NANO, 2018, 12 (12) :12932-12940
[2]   Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J].
Augustyn, Veronica ;
Simon, Patrice ;
Dunn, Bruce .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1597-1614
[3]   One-Step Construction of N,P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage [J].
Bai, Jing ;
Xi, Baojuan ;
Mao, Hongzhi ;
Lin, Yue ;
Ma, Xiaojian ;
Feng, Jinkui ;
Xiong, Shenglin .
ADVANCED MATERIALS, 2018, 30 (35)
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Co-Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium-Sulfur Batteries [J].
Chen, Yi ;
Zhang, Wenxue ;
Zhou, Dong ;
Tian, Huajun ;
Su, Dawei ;
Wang, Chengyin ;
Stockdale, Declan ;
Kang, Feiyu ;
Li, Baohua ;
Wang, Guoxiu .
ACS NANO, 2019, 13 (04) :4731-4741
[6]   Deeply Nesting Zinc Sulfide Dendrites in Tertiary Hierarchical Structure for Potassium Ion Batteries: Enhanced Conductivity from Interior to Exterior [J].
Chu, Jianhua ;
Wang, Wei Alex ;
Feng, Jianrui ;
Lao, Cheng-Yen ;
Xi, Kai ;
Xing, Lidong ;
Han, Kun ;
Li, Qiang ;
Song, Lei ;
Li, Ping ;
Li, Xin ;
Bao, Yanping .
ACS NANO, 2019, 13 (06) :6906-6916
[7]   Sulfur-Grafted Hollow Carbon Spheres for Potassium-Ion Battery Anodes [J].
Ding, Jia ;
Zhang, Hanlei ;
Zhou, Hui ;
Feng, Jun ;
Zheng, Xuerong ;
Zhong, Cheng ;
Paek, Eunsu ;
Hu, Wenbin ;
Mitlin, David .
ADVANCED MATERIALS, 2019, 31 (30)
[8]   Sulfur-doped cobalt phosphide nanotube arrays for highly stable hybrid supercapacitor [J].
Elshahawy, Abdelnaby M. ;
Guan, Cao ;
Li, Xin ;
Zhang, Hong ;
Hu, Yating ;
Wu, Haijun ;
Pennycook, Stephen J. ;
Wang, John .
NANO ENERGY, 2017, 39 :162-171
[9]   Graphite Anode for a Potassium-Ion Battery with Unprecedented Performance [J].
Fan, Ling ;
Ma, Ruifang ;
Zhang, Qingfeng ;
Jia, Xinxin ;
Lu, Bingan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10500-10505
[10]   A Nonaqueous Potassium-Based Battery-Supercapacitor Hybrid Device [J].
Fan, Ling ;
Lin, Kairui ;
Wang, Jue ;
Ma, Ruifang ;
Lu, Bingan .
ADVANCED MATERIALS, 2018, 30 (20)