Stabbing Circles for Sets of Segments in the Plane

被引:8
作者
Claverol, Merce [1 ]
Khramtcova, Elena [2 ]
Papadopoulou, Evanthia [2 ]
Saumell, Maria [3 ,4 ]
Seara, Carlos [1 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
[2] USI, Fac Informat, Lugano, Switzerland
[3] Univ West Bohemia, Dept Math, Plzen, Czech Republic
[4] Univ West Bohemia, European Ctr Excellence NTIS, Plzen, Czech Republic
关键词
Stabbing circle; Stabbing line segments; Voronoi diagram; Cluster Voronoi diagrams; Hausdorff Voronoi diagram; Farthest-color Voronoi diagram; HAUSDORFF-VORONOI DIAGRAM; UPPER ENVELOPE; LINE SEGMENTS; CLUSTERS; POLYGON;
D O I
10.1007/s00453-017-0299-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stabbing a set S of n segments in the plane by a line is a well-known problem. In this paper we consider the variation where the stabbing object is a circle instead of a line. We show that the problem is tightly connected to two cluster Voronoi diagrams, in particular, the Hausdorff and the farthest-color Voronoi diagram. Based on these diagrams, we provide a method to compute a representation of all the combinatorially different stabbing circles for S, and the stabbing circles with maximum and minimum radius. We give conditions under which our method is fast. These conditions are satisfied if the segments in S are parallel, resulting in a time and O(n) space algorithm. We also observe that the stabbing circle problem for S can be solved in worst-case optimal time and space by reducing the problem to computing the stabbing planes for a set of segments in 3D. Finally we show that the problem of computing the stabbing circle of minimum radius for a set of n parallel segments of equal length has an lower bound.
引用
收藏
页码:849 / 884
页数:36
相关论文
共 25 条
[1]  
Abellanas Manuel, 2001, P 17 EUROCG 2001, P113
[2]   Bichromatic 2-center of pairs of points [J].
Arkin, Esther M. ;
Miguel Diaz-Banez, Jose ;
Hurtado, Ferran ;
Kumar, Piyush ;
Mitchell, Joseph S. B. ;
Palop, Belen ;
Perez-Lantero, Pablo ;
Saumell, Maria ;
Silveira, Rodrigo I. .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (02) :94-107
[3]   Convex transversals [J].
Arkin, Esther M. ;
Dieckmann, Claudia ;
Knauer, Christian ;
Mitchell, Joseph S. B. ;
Polishchuk, Valentin ;
Schlipf, Lena ;
Yang, Shang .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (02) :224-239
[4]   Farthest line segment Voronoi diagrams [J].
Aurenhammer, F. ;
Drysdale, R. L. S. ;
Krasser, H. .
INFORMATION PROCESSING LETTERS, 2006, 100 (06) :220-225
[5]  
Aurenhammer F., 2013, Voronoi diagrams and Delaunay triangulations, V8
[6]   LOWER BOUNDS FOR LINE STABBING [J].
AVIS, D ;
ROBERT, JM ;
WENGER, R .
INFORMATION PROCESSING LETTERS, 1989, 33 (02) :59-62
[7]   RAY SHOOTING IN POLYGONS USING GEODESIC TRIANGULATIONS [J].
CHAZELLE, B ;
EDELSBRUNNER, H ;
GRIGNI, M ;
GUIBAS, L ;
HERSHBERGER, J ;
SHARIR, M ;
SNOEYINK, J .
ALGORITHMICA, 1994, 12 (01) :54-68
[8]   A Randomized Incremental Algorithm for the Hausdorff Voronoi Diagram of Non-crossing Clusters [J].
Cheilaris, Panagiotis ;
Khramtcova, Elena ;
Langerman, Stefan ;
Papadopoulou, Evanthia .
ALGORITHMICA, 2016, 76 (04) :935-960
[9]   Farthest-polygon Voronoi diagrams [J].
Cheong, Otfried ;
Everett, Hazel ;
Glisse, Marc ;
Gudmundsson, Joachim ;
Hornus, Samuel ;
Lazard, Sylvain ;
Lee, Mira ;
Na, Hyeon-Suk .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2011, 44 (04) :234-247
[10]  
Claverol Merce, 2015, Fundamentals of Computation Theory. 20th International Symposium, FCT 2015. Proceedings: LNCS 9210, P53, DOI 10.1007/978-3-319-22177-9_5