A Dimensionality Reduction and Reconstruction Method for Data with Multiple Connected Components

被引:0
|
作者
Yao, Yuqin [1 ]
Gao, Yang [2 ]
Long, Zhiguo [2 ]
Meng, Hua [1 ]
Sioutis, Michael [3 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu, Peoples R China
[2] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu, Peoples R China
[3] Univ Bamberg, Fac Informat Syst & Appl Comp Sci, Bavaria, Germany
来源
2022 IEEE THE 5TH INTERNATIONAL CONFERENCE ON BIG DATA AND ARTIFICIAL INTELLIGENCE (BDAI 2022) | 2022年
关键词
LE; Dimensionality reduction; Manifold learning; Topological connectivity;
D O I
10.1109/BDAI56143.2022.9862787
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the literature on dimensionality reduction, including Spectral Clustering and Laplacian Eigenmaps, one of the core ideas is to reconstruct data based on similarities between data points, which makes the choice of similarity matrices a key factor on the performance of a dimensionality reduction model. Traditional methods like K-nearest neighbor, is an element of-neighbor, and Gaussian Kernel for constructing similarity matrices based on data distribution characteristics have been extensively studied. However, these methods usually focus on only a specific level of the data when considering the similarity between data points, which might result in a great flaw in data reconstruction when data possess hierarchical and multiple groups structure. Specifically, such methods can only characterize the similarity between data within a group, but ignore the similarity between different groups. To overcome this deficiency, this paper proposes a hierarchical way of similarity matrix construction, by introducing strong, weak, and intra- and inter-cluster similarities to describe relations between multiple levels. The proposed method can better adapt to complex data with multiple connected components, and the effectiveness of it is verified in a series of experiments on synthetic and real-world datasets.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 50 条
  • [31] A restorable autoencoder as a method for dimensionality reduction
    Yeongcheol Jeong
    Sunhee Kim
    Chang-Yong Lee
    Journal of the Korean Physical Society, 2021, 78 : 315 - 327
  • [32] Multiple Kernel Learning for Spectral Dimensionality Reduction
    Hernan Peluffo-Ordonez, Diego
    Eduardo Castro-Ospina, Andres
    Carlos Alvarado-Perez, Juan
    Javier Revelo-Fuelagan, Edgardo
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2015, 2015, 9423 : 626 - 634
  • [33] Multiple Manifold Learning by Nonlinear Dimensionality Reduction
    Valencia-Aguirre, Juliana
    Alvarez-Meza, Andres
    Daza-Santacoloma, Genaro
    Acosta-Medina, Carlos
    German Castellanos-Dominguez, Cesar
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, 2011, 7042 : 206 - +
  • [34] The Sample and Instance Selection for Data Dimensionality Reduction
    Subbotin, Sergey
    Oliinyk, Andrii
    RECENT ADVANCES IN SYSTEMS, CONTROL AND INFORMATION TECHNOLOGY, 2017, 543 : 97 - 103
  • [35] Dimensionality reduction for data of unknown cluster structure
    Nowakowska, Ewa
    Koronacki, Jacek
    Lipovetsky, Stan
    INFORMATION SCIENCES, 2016, 330 : 74 - 87
  • [36] Dimensionality reduction techniques for iot based data
    Tomar D.
    Tomar P.
    Recent Advances in Computer Science and Communications, 2021, 14 (03) : 724 - 735
  • [37] Nonlinear Dimensionality Reduction and Data Visualization:A Review
    Hujun Yin School of Electrical and Electronic Engineering
    International Journal of Automation & Computing, 2007, (03) : 294 - 303
  • [38] Dimensionality Reduction of RNA-Seq Data
    Al-Turaiki, Isra
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (03): : 31 - 36
  • [39] Analysis of Dimensionality Reduction Techniques on Big Data
    Reddy, G. Thippa
    Reddy, M. Praveen Kumar
    Lakshmanna, Kuruva
    Kaluri, Rajesh
    Rajput, Dharmendra Singh
    Srivastava, Gautam
    Baker, Thar
    IEEE ACCESS, 2020, 8 : 54776 - 54788
  • [40] Soft dimensionality reduction for reinforcement data clustering
    Fatemeh Fathinezhad
    Peyman Adibi
    Bijan Shoushtarian
    Hamidreza Baradaran Kashani
    Jocelyn Chanussot
    World Wide Web, 2023, 26 : 3027 - 3054