The geometric ergodicity and existence of moments for a class of non-linear time series model

被引:26
作者
An, HZ [1 ]
Chen, M [1 ]
Huang, FC [1 ]
机构
[1] ACAD SINICA,INST APPL MATH,BEIJING 100080,PEOPLES R CHINA
关键词
nonlinear time series; beta-ARCH model; Markov chain; geometric ergodicity; higher-order moments;
D O I
10.1016/S0167-7152(96)00033-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the non-linear time series model x(t) = epsilon(t)(alpha(0) + alpha(1)\x(t-1)\(r beta) +...+ alpha(p)\x(t-p)\(r beta))(1/r) When r = 2 it is called the beta-ARCH(p) model. We examine the geometric ergodicity and the existence of higher-order moments for this model.
引用
收藏
页码:213 / 224
页数:12
相关论文
共 10 条
[1]   STATIONARITY OF GARCH PROCESSES AND OF SOME NONNEGATIVE TIME-SERIES [J].
BOUGEROL, P ;
PICARD, N .
JOURNAL OF ECONOMETRICS, 1992, 52 (1-2) :115-127
[2]   ON THE USE OF THE DETERMINISTIC LYAPUNOV FUNCTION FOR THE ERGODICITY OF STOCHASTIC DIFFERENCE-EQUATIONS [J].
CHAN, KS ;
TONG, H .
ADVANCES IN APPLIED PROBABILITY, 1985, 17 (03) :666-678
[3]   AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY WITH ESTIMATES OF THE VARIANCE OF UNITED-KINGDOM INFLATION [J].
ENGLE, RF .
ECONOMETRICA, 1982, 50 (04) :987-1007
[4]  
FEIGIN PD, 1985, J TIME SER ANAL, V6, P1
[5]  
GUEGAN D, 1994, STAT SINICA, V4, P71
[6]  
Horn R. A., 1986, Matrix analysis
[7]   STATIONARITY AND PERSISTENCE IN THE GARCH(1,1) MODEL [J].
NELSON, DB .
ECONOMETRIC THEORY, 1990, 6 (03) :318-334
[8]  
Nummelin E., 1984, Cambridge Tracts in Mathematics, DOI DOI 10.1017/CBO9780511526237
[9]   NONLINEAR TIME-SERIES AND MARKOV-CHAINS [J].
TJOSTHEIM, D .
ADVANCES IN APPLIED PROBABILITY, 1990, 22 (03) :587-611
[10]  
Tong H., 1990, Non-Linear Time Series: A Dynamical System Approach