Fast Bundle Algorithm for Multiple-Instance Learning

被引:58
|
作者
Bergeron, Charles [1 ,2 ]
Moore, Gregory [1 ]
Zaretzki, Jed [3 ]
Breneman, Curt M. [3 ]
Bennett, Kristin P. [1 ,4 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Elect Syst & Comp Engn, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Chem & Chem Biol, Troy, NY 12180 USA
[4] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
基金
美国国家卫生研究院;
关键词
Artificial intelligence; machine learning; nonsmooth optimization; bundle methods; multiple-instance learning; ranking; medicine and science; CYTOCHROMES P450;
D O I
10.1109/TPAMI.2011.194
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a bundle algorithm for multiple-instance classification and ranking. These frameworks yield improved models on many problems possessing special structure. Multiple-instance loss functions are typically nonsmooth and nonconvex, and current algorithms convert these to smooth nonconvex optimization problems that are solved iteratively. Inspired by the latest linear-time subgradient-based methods for support vector machines, we optimize the objective directly using a nonconvex bundle method. Computational results show this method is linearly scalable, while not sacrificing generalization accuracy, permitting modeling on new and larger data sets in computational chemistry and other applications. This new implementation facilitates modeling with kernels.
引用
收藏
页码:1068 / 1079
页数:12
相关论文
共 50 条
  • [1] An improved multiple-instance learning algorithm
    Han, Fengqing
    Wang, Dacheng
    Liao, Xiaofeng
    ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 1, PROCEEDINGS, 2007, 4491 : 1104 - +
  • [2] Multiple-Instance Learning with Instance Selection via Constructive Covering Algorithm
    Zhang, Yanping
    Zhang, Heng
    Wei, Huazhen
    Tang, Jie
    Zhao, Shu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (03) : 285 - 292
  • [3] Multiple-Instance Learning with Instance Selection via Constructive Covering Algorithm
    Yanping Zhang
    Heng Zhang
    Huazhen Wei
    Jie Tang
    Shu Zhao
    Tsinghua Science and Technology, 2014, 19 (03) : 285 - 292
  • [4] Multiple-Instance Learning with Instance Selection via Constructive Covering Algorithm
    Yanping Zhang
    Heng Zhang
    Huazhen Wei
    Jie Tang
    Shu Zhao
    Tsinghua Science and Technology, 2014, (03) : 285 - 292
  • [5] mi-DS: Multiple-Instance Learning Algorithm
    Nguyen, Dat T.
    Nguyen, Cao D.
    Hargraves, Rosalyn
    Kurgan, Lukasz A.
    Cios, Krzysztof J.
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (01) : 143 - 154
  • [6] ON GENERALIZED MULTIPLE-INSTANCE LEARNING
    Scott, Stephen
    Zhang, Jun
    Brown, Joshua
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2005, 5 (01) : 21 - 35
  • [7] Compact Multiple-Instance Learning
    Chai, Jing
    Liu, Weiwei
    Tsang, Ivor W.
    Shen, Xiaobo
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 2007 - 2010
  • [8] On multiple-instance learning of halfspaces
    Diochnos, D. I.
    Sloan, R. H.
    Turan, Gy
    INFORMATION PROCESSING LETTERS, 2012, 112 (23) : 933 - 936
  • [9] A framework for multiple-instance learning
    Maron, O
    Lozano-Perez, T
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 10, 1998, 10 : 570 - 576
  • [10] UNSUPERVISED MULTIPLE-INSTANCE LEARNING FOR INSTANCE SEARCH
    Wang, Zhenzhen
    Yuan, Junsong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,