Fast Bundle Algorithm for Multiple-Instance Learning

被引:58
作者
Bergeron, Charles [1 ,2 ]
Moore, Gregory [1 ]
Zaretzki, Jed [3 ]
Breneman, Curt M. [3 ]
Bennett, Kristin P. [1 ,4 ]
机构
[1] Rensselaer Polytech Inst, Dept Math Sci, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Elect Syst & Comp Engn, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Chem & Chem Biol, Troy, NY 12180 USA
[4] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
基金
美国国家卫生研究院;
关键词
Artificial intelligence; machine learning; nonsmooth optimization; bundle methods; multiple-instance learning; ranking; medicine and science; CYTOCHROMES P450;
D O I
10.1109/TPAMI.2011.194
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a bundle algorithm for multiple-instance classification and ranking. These frameworks yield improved models on many problems possessing special structure. Multiple-instance loss functions are typically nonsmooth and nonconvex, and current algorithms convert these to smooth nonconvex optimization problems that are solved iteratively. Inspired by the latest linear-time subgradient-based methods for support vector machines, we optimize the objective directly using a nonconvex bundle method. Computational results show this method is linearly scalable, while not sacrificing generalization accuracy, permitting modeling on new and larger data sets in computational chemistry and other applications. This new implementation facilitates modeling with kernels.
引用
收藏
页码:1068 / 1079
页数:12
相关论文
共 37 条
[1]  
Andrews S., 2003, P ADV NEUR INF PROC, V15
[2]  
[Anonymous], 2006, P ACMSIGKDD INT C KN
[3]  
[Anonymous], P SIAM INT C DAT MIN
[4]  
[Anonymous], 2000, International Conference on Machine Learning (ICML)
[5]  
[Anonymous], 2002, ICML
[6]  
Astorino A, 2007, IEEE T PATTERN ANAL, V29, P2135, DOI [10.1109/TPAMI.2007.1102, 10.1109/TPAMI.2007.1102.]
[7]  
Auer P, 2004, LECT NOTES COMPUT SC, V3201, P63
[8]  
Bergeron Charles., 2008, P INT C MACHINE LEAR, V25, P48
[9]  
Blockeel H., 2005, P 22 INT C MACH LEAR, V22, P144
[10]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401