The Size of a Hypergraph and its Matching Number

被引:84
作者
Huang, Hao [1 ]
Loh, Po-Shen [2 ]
Sudakov, Benny [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
SETS;
D O I
10.1017/S096354831100068X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
More than forty years ago, Erdos conjectured that for any t <= n/k, every k-uniform hypergraph on n vertices without t disjoint edges has at most max{((kt-1)(k)), ((n)(k)) - ((n-t+1)(k))} edges. Although this appears to be a basic instance of the hypergraph Turan problem (with a t-edge matching as the excluded hypergraph), progress on this question has remained elusive. In this paper, we verify this conjecture for all t < n/3k(2). This improves upon the best previously known range t = O(n/k(3)), which dates back to the 1970s.
引用
收藏
页码:442 / 450
页数:9
相关论文
共 12 条
[1]  
Aharoni R., SIZE CONDITION UNPUB
[2]  
Alon N., NONNEGATIVE K UNPUB
[3]  
Alon N., LARGE MATCHING UNPUB
[4]   SETS OF INDEPENDENT EDGES OF A HYPERGRAPH [J].
BOLLOBAS, B ;
DAYKIN, DE ;
ERDOS, P .
QUARTERLY JOURNAL OF MATHEMATICS, 1976, 27 (105) :25-32
[5]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[6]  
Erdos Paul, 1965, Ann. Univ. Sci. Budapest. Eotvos Sect. Math, V8, P93
[7]  
Erdos Paul, 1959, Acta Math. Acad. Sci. Hungar, V10, P337, DOI [10.1007/bf02024498, DOI 10.1007/BF02024498]
[8]  
Frankl P., 1987, Surveys in combinatorics 1987 (New Cross, 1987), V123, P81
[9]  
Frankl P., MAXIMUM NUM IN PRESS
[10]  
Kleitman D., 1968, J COMBINATORIAL THEO, V5, P153