Diophantine properties of fixed points of Minkowski question mark function

被引:4
作者
Gayfulin, Dmitry [1 ]
Shulga, Nikita [2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Gubkina 8, Moscow 117966, Russia
[2] Moscow MV Lomonosov State Univ, Dept Math & Mech, Leninskiye Gory 1, Moscow 119991, Russia
关键词
Minkowski question mark function; continued fractions; DIFFERENTIABILITY;
D O I
10.4064/aa181209-18-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:367 / 382
页数:16
相关论文
共 14 条
[1]  
Denjoy A., 1932, C R Acad Sci Paris, V194, P44
[2]  
Denjoy A, 1938, J MATH PURE APPL, V17, P105
[3]  
Dushistova A. A., 2012, J MATH SCI, V182, P463
[4]   Differentiability of the Minkowski question mark function [J].
Dushistova, Anna A. ;
Kan, Igor D. ;
Moshchevitin, Nikolay G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) :774-794
[5]  
KAN ID, 2012, J MATH SCI N Y, V182
[6]   Fractal analysis for sets of non-differentiability of Minkowski's question mark function [J].
Kesseboehmer, Marc ;
Stratmann, Bernd O. .
JOURNAL OF NUMBER THEORY, 2008, 128 (09) :2663-2686
[7]  
Kinney J.R., 1960, Proc. Amer. Math. Soc., V11, P788
[8]  
MINKOWSKI H, 1904, VERH 3 INT MATH K HE, P164
[9]  
Moshchevitin N. G., 2012, ARXIV12024539
[10]   DYADIC FRACTIONS WITH SMALL PARTIAL QUOTIENTS [J].
NIEDERREITER, H .
MONATSHEFTE FUR MATHEMATIK, 1986, 101 (04) :309-315