Numerical simulation on spectral compression of frequency-shifting femtosecond pulses in photonic crystal fiber

被引:0
|
作者
Li, S. N. [1 ]
Li, H. P. [1 ]
Wang, Q. M. [1 ]
Liao, J. K. [1 ]
Tang, X. G. [1 ]
Lu, R. G. [1 ]
Liu, Y. [1 ]
Liu, Y. Z. [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Optoelect Informat, Chengdu 610054, Peoples R China
关键词
spectral compression; soliton self-frequency shift; ultrashort pulse; photonic crystal fiber; SUPERCONTINUUM GENERATION; RESOLUTION IMPROVEMENT;
D O I
10.1117/12.906297
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a numerical investigation of nonlinear propagation of femtosecond pulses in photonic crystal fibers (PCFs) by solving the generalized nonlinear Schrodinger equation. The PCFs have a second-order dispersion of -48 ps2/km, nonlinear coefficient of 115 W-1km-1, and third-order dispersion (TOD) ranging from 0.1 ps3/km to 1 ps3/km at 1550-nm wavelength. The simulation results show that efficient spectral compression of ultrashort pulses can be induced in the regime of soliton self-frequency shift (SSFS) in PCFs when the input pulse parameters satisfy the condition 0.9 = N = 1.2 for the soliton order N. It is found that the output spectral width is dependent on the peak power of input pulse and the PCF length. A spectral-compression factor up to 2.2 can be achieved for 50-fs, 1550-nm solitons propagating through 10-m PCF with a TOD of 0.5 ps3/km, where the soliton wavelength shifted from 1550 nm to 1698 nm. The effect of initial pulse chirp on output spectral width can be negligible for large PCF length. Greater spectral-compression factor can be obtained using PCF with larger TOD value. This SSFS-based spectral-compression scheme offers much promise for generation of narrow line-width tunable light sources in photonic applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Spectral compression of frequency-shifting solitons in a photonic-crystal fiber
    Fedotov, A. B.
    Voronin, A. A.
    Fedotov, I. V.
    Ivanov, A. A.
    Zheltikov, A. M.
    OPTICS LETTERS, 2009, 34 (05) : 662 - 664
  • [2] Spectral compression of femtosecond pulses in photonic crystal fibers
    Andresen, ER
    Thogersen, J
    Keiding, SR
    OPTICS LETTERS, 2005, 30 (15) : 2025 - 2027
  • [3] Numerical investigation on frequency-shifting-induced spectral compression of femtosecond solitons in highly nonlinear fiber
    Li, S. N.
    Li, H. P.
    Liao, J. K.
    Tang, X. G.
    Lu, R. G.
    Liu, Y.
    OPTIK, 2013, 124 (16): : 2281 - 2284
  • [4] ACOUSTOOPTIC FREQUENCY-SHIFTING IN BIREFRINGENT FIBER
    RISK, WP
    YOUNGQUIST, RC
    KINO, GS
    SHAW, HJ
    OPTICS LETTERS, 1984, 9 (07) : 309 - 311
  • [5] Spectral Compression of Femtosecond Pulses via Frequency Intermodulation
    Mansuryan, T. G.
    JOURNAL OF CONTEMPORARY PHYSICS-ARMENIAN ACADEMY OF SCIENCES, 2008, 43 (06) : 271 - 274
  • [6] Spectral compression of femtosecond pulses via frequency intermodulation
    T. G. Mansuryan
    Journal of Contemporary Physics (Armenian Academy of Sciences), 2008, 43
  • [7] Self-compression of subgigawatt femtosecond laser pulses in a hollow photonic-crystal fiber
    S. O. Konorov
    E. E. Serebryannikov
    A. A. Ivanov
    D. A. Akimov
    M. V. Alfimov
    M. Scalora
    A. M. Zheltikov
    Journal of Experimental and Theoretical Physics Letters, 2005, 81 : 58 - 61
  • [8] Self-compression of subgigawatt femtosecond laser pulses in a hollow photonic-crystal fiber
    Konorov, SO
    Serebryannikov, EE
    Ivanov, AA
    Akimov, DA
    Alfimov, MV
    Scalora, M
    Zheltikov, AM
    JETP LETTERS, 2005, 81 (02) : 58 - 61
  • [9] Supercontinuum generation in photonic crystal fiber using femtosecond pulses
    Harun, S. W.
    Akbari, R.
    Arof, H.
    Ahmad, H.
    LASER PHYSICS, 2011, 21 (07) : 1215 - 1218
  • [10] Polarization-controlled vectorial spectral transformations of femtosecond pulses in a birefringent photonic-crystal fiber
    Ivanov, AA
    Alfimov, MV
    Zheltikov, AM
    Szpulak, M
    Urbanczyk, W
    Wójcik, J
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (05) : 986 - 991