Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles

被引:133
作者
Zeng, Ying [1 ]
Liu, Hong-Yuan [1 ]
Mai, Yiu-Wing [1 ]
Du, Xu-Sheng [1 ]
机构
[1] Univ Sydney, CAMT, Sch Aerosp Mech & Mech Engn 107, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
Mode I delamination; Carbon fibre composite; Silica nano-particles; Rubber nano-particles; FILLED EPOXY; SILICA; COMPOSITES; BEHAVIORS; TEMPERATURES; MECHANISMS;
D O I
10.1016/j.compositesb.2011.04.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Double-cantilever-beam tests were applied to investigate the mode I interlaminar fracture toughness of carbon fibre/epoxy laminates, in which the epoxy matrices were incorporated with rubber and silica nano-particles, either singly or jointly. It is shown that the toughness is improved owing to the presence of these nano-particles although nano-rubber is more effective than nano-silica. Further, by keeping the total particle weight percentage constant in epoxies (e.g., at 8 and 12 wt.%) filled with equal amount of nano-silica and nano-rubber, the interlaminar toughness values of the hybrid laminates are always higher than those with nano-silica filled epoxies but lower than those with nano-rubber filled matrices. Scanning electron microscopy examination of the delaminated surfaces of composite laminates filled with nano-particles revealed that cavitation of nano-rubber particles/void growth and debonding of nano-silica from epoxy matrix are responsible for the improved interlaminar toughness observed. It is also shown that the bulk toughness of nano-particle filled epoxies cannot be fully transferred to the interlaminar toughness of composite laminates, being limited by the constraint effect imposed by the carbon fibres. Finally, the role of fibre-bridging on the delaminated crack and hence delamination toughness is discussed. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:90 / 94
页数:5
相关论文
共 15 条
[1]   Fracture toughness of nano- and micro-spherical silica-particle-filled epoxy composites [J].
Adachi, Tadaharu ;
Osaki, Mayuka ;
Araki, Wakako ;
Kwon, Soon-Chul .
ACTA MATERIALIA, 2008, 56 (09) :2101-2109
[2]  
[Anonymous], 2008, ASTMD5528
[3]   Rubber-Toughened Epoxies: A Critical Review [J].
Bagheri, R. ;
Marouf, B. T. ;
Pearson, R. A. .
POLYMER REVIEWS, 2009, 49 (03) :201-225
[4]   Experimental study on z-pin bridging law by pullout test [J].
Dai, SC ;
Yan, WY ;
Liu, HY ;
Mai, YW .
COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (16) :2451-2457
[5]   Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures [J].
Deng, Shiqiang ;
Ye, Lin ;
Friedrich, Klaus .
JOURNAL OF MATERIALS SCIENCE, 2007, 42 (08) :2766-2774
[6]   Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites [J].
Fu, Shao-Yun ;
Feng, Xi-Qiao ;
Lauke, Bernd ;
Mai, Yiu-Wing .
COMPOSITES PART B-ENGINEERING, 2008, 39 (06) :933-961
[7]   FAILURE MECHANISMS IN TOUGHENED EPOXY-RESINS - A REVIEW [J].
GARG, AC ;
MAI, YW .
COMPOSITES SCIENCE AND TECHNOLOGY, 1988, 31 (03) :179-223
[8]   The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles [J].
Hsieh, T. H. ;
Kinloch, A. J. ;
Masania, K. ;
Lee, J. Sohn ;
Taylor, A. C. ;
Sprenger, S. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (05) :1193-1210
[9]   Toughening mechanisms of nanoparticle-modified epoxy polymers [J].
Johnsen, B. B. ;
Kinloch, A. J. ;
Mohammed, R. D. ;
Taylor, A. C. ;
Sprenger, S. .
POLYMER, 2007, 48 (02) :530-541
[10]   Toughening mechanisms in epoxy-silica nanocomposites (ESNs) [J].
Liang, Y. L. ;
Pearson, R. A. .
POLYMER, 2009, 50 (20) :4895-4905