An explicit nonstandard finite difference scheme for the Allen-Cahn equation

被引:13
作者
Aderogba, A. A. [1 ]
Chapwanya, M. [1 ]
机构
[1] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
关键词
Allen-Cahn equation; nonstandard finite difference; explicit scheme; APPROXIMATIONS;
D O I
10.1080/10236198.2015.1055737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We design explicit nonstandard finite difference schemes for the nonlinear Allen-Cahn reaction diffusion equation in the limit of very small interaction length epsilon. In the proposed scheme, the perturbation parameter is part of the argument of the functional step size, thereby minimizing the restrictions normally associated with standard explicit finite difference schemes. The derivation involves splitting the equation into the space-independent and the time-independent different models. An exact nonstandard scheme is proposed for the space-independent model and energy conservative schemes are proposed for the time-independent model. We show the power of the derived scheme over the existing schemes through several numerical examples.
引用
收藏
页码:875 / 886
页数:12
相关论文
共 19 条
[1]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[2]   Energy properties preserving schemes for Burgers' equation [J].
Anguelov, R. ;
Djoko, J. K. ;
Lubuma, J. M. -S. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (01) :41-59
[3]   On non-standard finite difference models of reaction-diffusion equations [J].
Anguelov, R ;
Kama, P ;
Lubuma, JMS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 175 (01) :11-29
[4]   Topological dynamic consistency of non-standard finite difference schemes for dynamical systems [J].
Anguelov, R. ;
Lubuma, J. M. -S. ;
Shillor, M. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (12) :1769-1791
[5]   Nonstandard finite difference schemes for Michaelis-Menten type reaction-diffusion equations [J].
Chapwanya, Michael ;
Lubuma, Jean M. -S. ;
Mickens, Ronald E. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (01) :337-360
[6]   Nonstandard discretizations of the generalized Nagumo reaction-diffusion equation [J].
Chen, Z ;
Gumel, AB ;
Mickens, RE .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2003, 19 (03) :363-379
[7]   An unconditionally gradient stable numerical method for solving the Allen-Cahn equation [J].
Choi, Jeong-Whan ;
Lee, Hyun Geun ;
Jeong, Darae ;
Kim, Junseok .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (09) :1791-1803
[8]   Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows [J].
Feng, XB ;
Prohl, A .
NUMERISCHE MATHEMATIK, 2003, 94 (01) :33-65
[9]   A semi-analytical Fourier spectral method for the Allen-Cahn equation [J].
Lee, Hyun Geun ;
Lee, June-Yub .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (03) :174-184
[10]   Non-standard methods for singularly perturbed problems possessing oscillatory/layer solutions [J].
Lubuma, Jean M. -S. ;
Patidar, Kailash C. .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (02) :1147-1160