Influence of Nonseasonal River Discharge on Sea Surface Salinity and Height

被引:12
作者
Chandanpurkar, Hrishikesh A. [1 ,2 ,3 ]
Lee, Tong [1 ]
Wang, Xiaochun [4 ]
Zhang, Hong [1 ]
Fournier, Severine [1 ]
Fenty, Ian [1 ]
Fukumori, Ichiro [1 ]
Menemenlis, Dimitris [1 ]
Piecuch, Christopher G. [5 ]
Reager, John T. [1 ]
Wang, Ou [1 ]
Worden, John [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91125 USA
[2] Univ Saskatchewan, Saskatoon, SK, Canada
[3] FLAME Univ, Pune, Maharashtra, India
[4] Univ Calif Los Angeles, Los Angeles, CA USA
[5] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
基金
美国国家航空航天局;
关键词
river discharge; sea surface salinity; sea surface height; BENGAL SALINITY; VERSION; 4; OCEAN; CIRCULATION; COASTAL; PLUME; VARIABILITY; SMOS; BAY; REPRESENTATION;
D O I
10.1029/2021MS002715
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
River discharge influences ocean dynamics and biogeochemistry. Due to the lack of a systematic, up-to-date global measurement network for river discharge, global ocean models typically use seasonal discharge climatology as forcing. This compromises the simulated nonseasonal variation (the deviation from seasonal climatology) of the ocean near river plumes and undermines their usefulness for interdisciplinary research. Recently, a reanalysis-based daily varying global discharge data set was developed, providing the first opportunity to quantify nonseasonal discharge effects on global ocean models. Here we use this data set to force a global ocean model for the 1992-2017 period. We contrast this experiment with another experiment (with identical atmospheric forcings) forced by seasonal climatology from the same discharge data set to isolate nonseasonal discharge effects, focusing on sea surface salinity (SSS) and sea surface height (SSH). Near major river mouths, nonseasonal discharge causes standard deviations in SSS (SSH) of 1.3-3 practical salinity unit (1-2.7 cm). The inclusion of nonseasonal discharge results in notable improvement of model SSS against satellite SSS near most of the tropical-to-midlatitude river mouths and minor improvement of model SSH against satellite or in-situ SSH near some of the river mouths. SSH changes associated with nonseasonal discharge can be explained by salinity effects on halosteric height and estimated accurately through the associated SSS changes. A recent theory predicting river discharge impact on SSH is found to perform reasonably well overall but underestimates the impact on SSH around the global ocean and has limited skill when applied to rivers near the equator and in the Arctic Ocean.
引用
收藏
页数:27
相关论文
共 70 条
[1]   A modeling study of processes controlling the Bay of Bengal sea surface salinity interannual variability [J].
Akhil, V. P. ;
Lengaigne, M. ;
Vialard, J. ;
Durand, F. ;
Keerthi, M. G. ;
Chaitanya, A. V. S. ;
Papa, F. ;
Gopalakrishna, V. V. ;
Montegut, Clement de Boyer .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2016, 121 (12) :8471-8495
[2]   The Barrier Layer of the Atlantic warm pool: Formation mechanism and influence on the mean climate [J].
Balaguru, K. ;
Chang, P. ;
Saravanan, R. ;
Jang, C. J. .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2012, 64
[3]   On the resolutions of ocean altimetry maps [J].
Ballarotta, Maxime ;
Ubelmann, Clement ;
Pujol, Marie-Isabelle ;
Taburet, Guillaume ;
Fournier, Florent ;
Legeais, Jean-Francois ;
Faugere, Yannice ;
Delepoulle, Antoine ;
Chelton, Dudley ;
Dibarboure, Gerald ;
Picot, Nicolas .
OCEAN SCIENCE, 2019, 15 (04) :1091-1109
[4]   The upper Bay of Bengal salinity structure in a high-resolution model [J].
Benshila, Rachid ;
Durand, Fabien ;
Masson, Sebastien ;
Bourdalle-Badie, Romain ;
Montegut, Clement de Boyer ;
Papa, Fabrice ;
Madec, Gurvan .
OCEAN MODELLING, 2014, 74 :36-52
[5]   Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications [J].
Boano, F. ;
Harvey, J. W. ;
Marion, A. ;
Packman, A. I. ;
Revelli, R. ;
Ridolfi, L. ;
Woerman, A. .
REVIEWS OF GEOPHYSICS, 2014, 52 (04) :603-679
[6]   New SMOS Sea Surface Salinity with reduced systematic errors and improved variability [J].
Boutin, J. ;
Vergely, J. L. ;
Marchand, S. ;
D'Amico, F. ;
Hasson, A. ;
Kolodziejczyk, N. ;
Reul, N. ;
Reverdin, G. ;
Vialard, J. .
REMOTE SENSING OF ENVIRONMENT, 2018, 214 :115-134
[7]   SATELLITE AND IN SITU SALINITY Understanding Near-Surface Stratification and Subfootprint Variability [J].
Boutin, J. ;
Chao, Y. ;
Asher, W. E. ;
Delcroix, T. ;
Drucker, R. ;
Drushka, K. ;
Kolodziejczyk, N. ;
Lee, T. ;
Reul, N. ;
Reverdin, G. ;
Schanze, J. ;
Soloviev, A. ;
Yu, L. ;
Anderson, J. ;
Brucker, L. ;
Dinnat, E. ;
Santos-Garcia, A. ;
Jones, W. L. ;
Maes, C. ;
Meissner, T. ;
Tang, W. ;
Vinogradova, N. ;
Ward, B. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (08) :1391-+
[8]  
Chandanpurkar HA, 2017, J CLIMATE, V30, P8481, DOI [10.1175/JCLI-D-16-0708.1, 10.1175/jcli-d-16-0708.1]
[9]   Sea surface salinity variability in response to the Congo river discharge [J].
Chao, Yi ;
Farrara, John D. ;
Schumann, Guy ;
Andreadis, Konstantinos M. ;
Moller, Delwyn .
CONTINENTAL SHELF RESEARCH, 2015, 99 :35-45
[10]   Changes in Continental Freshwater Discharge from 1948 to 2004 [J].
Dai, Aiguo ;
Qian, Taotao ;
Trenberth, Kevin E. ;
Milliman, John D. .
JOURNAL OF CLIMATE, 2009, 22 (10) :2773-2792