Minimum error gain for predicting visual target distinctness

被引:7
|
作者
García, JA
Fdez-Valdivia, J
Rodriguez-Sánchez, R
Fuertes, JM
机构
[1] Univ Granada, ETS Ingn Informat, Dept Ciencias Computac & IA, E-18071 Granada, Spain
[2] Univ Santiago Compostela, Fac Fis, Dept Fis Aplicada, Santiago De Compostela 15706, Spain
[3] Univ Jaen, Escuela Politecn Super, Dept Informat, Jaen 23071, Spain
关键词
visual target distinctness; information theoretical measures; psychophysical experiments; Search_2; dataset;
D O I
10.1117/1.1389064
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a new method for characterizing information about a target relative to its background. The resultant computational measures are then applied to quantify the visual distinctness of targets in complex natural backgrounds from digital imagery. A generalization of the Kullback-Leibler joint information gain over the optimal interest points of the target image is shown to correlate strongly with visual target distinctness as estimated by human observers. Optimal interest points are defined as spatial locations of partially invariant features, which minimize the error probability between the target and the nontarget scenes; their significance is a function of the corresponding degree of congruence across scales and orientations. (C) 2001 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页码:1794 / 1817
页数:24
相关论文
共 50 条
  • [1] Defining the notion of visual pattern for predicting visual target distinctness in a complex rural background
    Fdez-Vidal, XR
    Garcia, JA
    Fdez-Valdivia, J
    Rodriguez-Sanchez, R
    OPTICAL ENGINEERING, 2000, 39 (02) : 415 - 429
  • [2] Information theoretic measure for visual target distinctness
    García, JA
    Fdez-Valdivia, J
    Fdez-Vidal, XR
    Rodriguez-Sánchez, R
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (04) : 362 - 383
  • [3] Quantifying target distinctness through visual conspicuity
    Toet, A
    Bijl, P
    Kooi, FL
    Valeton, JM
    TARGETS AND BACKGROUNDS: CHARACTERIZATION AND REPRESENTATION IV, 1998, 3375 : 152 - 163
  • [4] PREDICTING VISUAL DISTINCTNESS OF BORDERS FORMED BY DIFFERENT COLORS
    GRANGER, EM
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1975, 65 (10) : 1194 - 1194
  • [5] Image representational model for predicting visual distinctness of objects
    Fdez-Vidal, XR
    Rodriguez-Sánchez, R
    Mtnez-Baena, J
    Chamorro, J
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS: COMPUTER VISION AND IMAGE ANALYSIS, 2000, : 689 - 694
  • [6] Computing visual target distinctness through selective filtering, statistical features, and visual patterns
    Fdez-Vidal, XR
    Toet, A
    Garcia, JA
    Fdez-Valdivia, J
    OPTICAL ENGINEERING, 2000, 39 (01) : 267 - 281
  • [7] Integral opponent-colors features for computing visual target distinctness
    Fdez-Vidal, XR
    Rodriguez-Sanchez, R
    Garcia, JA
    Fdez-Valdivia, J
    PATTERN RECOGNITION, 2000, 33 (07) : 1179 - 1198
  • [8] Minimum Bayes error features for visual recognition
    Carneiro, Gustavo
    Vasconcelos, Nuno
    IMAGE AND VISION COMPUTING, 2009, 27 (1-2) : 131 - 140
  • [9] Visual error is the stimulus for saccade gain adaptation
    Noto, CT
    Robinson, FR
    COGNITIVE BRAIN RESEARCH, 2001, 12 (02): : 301 - 305
  • [10] Computational visual distinctness metric
    Martinez-Baena, J
    Toet, A
    Fdez-Vidal, XR
    Garrido, A
    Rodriguez-Sanchez, R
    OPTICAL ENGINEERING, 1998, 37 (07) : 1995 - 2005