Increasing accuracy and reducing costs of genomic prediction by marker selection

被引:25
作者
Bandeira e Sousa, Massaine [1 ]
Galli, Giovanni [1 ]
Lyra, Danilo Hottis [1 ]
Correia Granato, Italo Stefanini [1 ]
Matias, Filipe Inacio [1 ]
Alves, Filipe Couto [1 ]
Fritsche-Neto, Roberto [1 ]
机构
[1] Univ Sao Paulo, Luiz de Queiroz Coll Agr, Dept Genet, Piracicaba, SP, Brazil
关键词
SNP array subset; Relative efficiency; Reliability; Model-kernel; GENETIC ARCHITECTURE; ECONOMIC TRAITS; IMPACT; VALUES; RELIABILITY; REGRESSION; POWERFUL; PEDIGREE; SUBSETS; ABILITY;
D O I
10.1007/s10681-019-2339-z
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Genotyping costs can be reduced without decreasing the genomic selection accuracy through methodologies of markers subsets assortment. Thus, we compared two strategies to obtain markers subsets. The former uses the primary and the latter the re-estimated markers effects. Moreover, we analyzed each subset via prediction accuracy, bias, and relative efficiency by main genotypic effect model (MGE) fitted, using genomic best linear unbiased predictor linear kernel (GB), and Gaussian nonlinear kernel (GK). All scenarios (subset of markersxkernels models) were applied to a public dataset of rice diversity panel (RICE) and two hybrids maize datasets (HEL and USP). The highest prediction accuracies were obtained by MGE-GB and MGE-GK for grain yield and plant height when we decrease the number of markers. Overall, marker subsets via re-estimated effects method showed a higher relative efficiency of genomic selection. Based on a high-density panel, we can conclude that it is possible to select the most informative markers in order to improve accuracy and build a low-cost SNP chip to implement genomic selection in breeding programs. In addition, we recommend REE(re-estimated effect) strategies to find markers subsets in training population, increasing accuracy of genomic selection.
引用
收藏
页数:14
相关论文
共 53 条
[1]   Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype x Environment Interaction [J].
Bandeira e Sousa, Massaine ;
Cuevas, Jaime ;
de Oliveira Couto, Evellyn Giselly ;
Perez-Rodriguez, Paulino ;
Jarquin, Diego ;
Fritsche-Neto, Roberto ;
Burgueno, Juan ;
Crossa, Jose .
G3-GENES GENOMES GENETICS, 2017, 7 (06) :1995-2014
[2]   Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.) [J].
Bassi, Filippo M. ;
Bentley, Alison R. ;
Charmet, Gilles ;
Ortiz, Rodomiro ;
Crossa, Jose .
PLANT SCIENCE, 2016, 242 :23-36
[3]   Genomic Selection in the Era of Next Generation Sequencing for Complex Traits in Plant Breeding [J].
Bhat, Javaid A. ;
Ali, Sajad ;
Salgotra, Romesh K. ;
Mir, Zahoor A. ;
Dutta, Sutapa ;
Jadon, Vasudha ;
Tyagi, Anshika ;
Mushtaq, Muntazir ;
Jain, Neelu ;
Singh, Pradeep K. ;
Singh, Gyanendra P. ;
Prabhu, K. V. .
FRONTIERS IN GENETICS, 2016, 7
[4]   Enhancing genomic prediction with genome-wide association studies in multiparental maize populations [J].
Bian, Y. ;
Holland, J. B. .
HEREDITY, 2017, 118 (06) :585-593
[5]   A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals [J].
Browning, Brian L. ;
Browning, Sharon R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 84 (02) :210-223
[6]   Genomic prediction in CIMMYT maize and wheat breeding programs [J].
Crossa, J. ;
Perez, P. ;
Hickey, J. ;
Burgueno, J. ;
Ornella, L. ;
Ceron-Rojas, J. ;
Zhang, X. ;
Dreisigacker, S. ;
Babu, R. ;
Li, Y. ;
Bonnett, D. ;
Mathews, K. .
HEREDITY, 2014, 112 (01) :48-60
[7]   Genomic Selection in Plant Breeding: Methods, Models, and Perspectives [J].
Crossa, Jose ;
Perez-Rodriguez, Paulino ;
Cuevas, Jaime ;
Montesinos-Lopez, Osval ;
Jarquin, Diego ;
de los Campos, Gustavo ;
Burgueno, Juan ;
Gonzalez-Camacho, Juan M. ;
Perez-Elizalde, Sergio ;
Beyene, Yoseph ;
Dreisigacker, Susanne ;
Singh, Ravi ;
Zhang, Xuecai ;
Gowda, Manje ;
Roorkiwal, Manish ;
Rutkoski, Jessica ;
Varshney, Rajeev K. .
TRENDS IN PLANT SCIENCE, 2017, 22 (11) :961-975
[8]   Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers [J].
Crossa, Jose ;
de los Campos, Gustavo ;
Perez, Paulino ;
Gianola, Daniel ;
Burgueno, Juan ;
Luis Araus, Jose ;
Makumbi, Dan ;
Singh, Ravi P. ;
Dreisigacker, Susanne ;
Yan, Jianbing ;
Arief, Vivi ;
Banziger, Marianne ;
Braun, Hans-Joachim .
GENETICS, 2010, 186 (02) :713-U406
[9]   Genomic Prediction of Genotype x Environment Interaction Kernel Regression Models [J].
Cuevas, Jaime ;
Crossa, Jose ;
Soberanis, Victor ;
Perez-Elizalde, Sergio ;
Perez-Rodriguez, Paulino ;
de los Campos, Gustavo ;
Montesinos-Lopez, O. A. ;
Burgueno, Juan .
PLANT GENOME, 2016, 9 (03)
[10]   Bayesian Genomic Prediction with Genotype x Environment Interaction Kernel Models [J].
Cuevas, Jaime ;
Crossa, Jose ;
Montesinos-Lopez, Osval A. ;
Burgueno, Juan ;
Perez-Rodriguez, Paulino ;
de los Campos, Gustavo .
G3-GENES GENOMES GENETICS, 2017, 7 (01) :41-53