Automatic Spine Vertebra segmentation in CT images using Deep Learning

被引:0
作者
Wu, Ping-Cheng [1 ]
Huang, Teng-Yi [1 ]
Juan, Chun-Jung [2 ,3 ,4 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei, Taiwan
[2] China Med Univ, Dept Med Imaging, Hsinchu Hosp, Hsinchu, Taiwan
[3] China Med Univ, Sch Med, Dept Radiol, Coll Med, Taichung, Taiwan
[4] China Med Univ Hosp, Dept Med Imaging, Taichung, Taiwan
来源
2019 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS) | 2019年
关键词
D O I
10.1109/ispacs48206.2019.8986367
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, we aimed to develop a fully automatic segmentation and classification system for spine vertebra regions. We used datasets provided by xVertSeg and trained a SegNet segmentation model. In our preliminary result, this model was able to identify the spine vertebra regions and levels.
引用
收藏
页数:2
相关论文
共 4 条
[1]   Shape Representation for Efficient Landmark-Based Segmentation in 3-D [J].
Ibragimov, Bulat ;
Likar, Bostjan ;
Pernus, Franjo ;
Vrtovec, Tomaz .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) :861-874
[2]   A Framework for Automated Spine and Vertebrae Interpolation-Based Detection and Model-Based Segmentation [J].
Korez, Robert ;
Ibragimov, Bulat ;
Likar, Bostjan ;
Pernus, Franjo ;
Vrtovec, Tomaz .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (08) :1649-1662
[3]   Quantitative vertebral morphometry based on parametric modeling of vertebral bodies in 3D [J].
Stern, D. ;
Njagulj, V. ;
Likar, B. ;
Pernus, F. ;
Vrtovec, T. .
OSTEOPOROSIS INTERNATIONAL, 2013, 24 (04) :1357-1368
[4]  
Vijay B., 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence, V39, P2481, DOI DOI 10.1109/TPAMI.2016.2644615