The subfield codes of several classes of linear codes

被引:13
作者
Wang, Xiaoqiang [1 ]
Zheng, Dabin [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
来源
CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES | 2020年 / 12卷 / 06期
基金
中国国家自然科学基金;
关键词
Weight distribution; Subfield code; Linear code; Optimal code;
D O I
10.1007/s12095-020-00432-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let F-2m be the finite field with 2(m) elements, where m is a positive integer. Recently, Heng and Ding in (Finite Fields Appl. 56:308-331, 2019) studied the subfield codes of two families of hyperovel codes and determined the weight distribution of the linear code C-a,C-b = {((Tr-1(m) (af (x) + bx) + c)(x is an element of F2m), Tr-1(m) (a), Tr-1(m) (b)) : a, b is an element of F-2m, c is an element of F-2}, for f (x) = x(2) and f (x) = x(6) with odd m. Let v(2)(.) denote the 2-adic order function. This paper investigates more subfield codes of linear codes and obtains the weight distribution of C-a,C-b for f (x) = x(2i+2j), where i, j are nonnegative integers such that v(2)(m) <= v(2)(i - j) (i >= j). In addition to this, we further investigate the punctured code of C-a,C-b as follows: C-a = {((Tr-1(m)(ax(2i+2j) + bx) + c)(x is an element of F2m), Tr-1(m)(a)) : a, b is an element of F-2m, c is an element of F-2}, and determine its weight distribution for any nonnegative integers i, j. The parameters of these binary linear codes are new in most cases. Some of the codes and their duals obtained are optimal or almost optimal.
引用
收藏
页码:1111 / 1131
页数:21
相关论文
共 25 条
[1]  
[Anonymous], 1971, Acta Arith, DOI DOI 10.4064/AA-18-1-423-449
[2]  
Cannon J., 2013, Handbook of Magma Functions
[3]   Weight divisibility of cyclic codes, highly nonlinear functions on F2m, and crosscorrelation of maximum-length sequences [J].
Canteaut, A ;
Charpin, P ;
Dobbertin, H .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2000, 13 (01) :105-138
[4]   Codes, Bent Functions and Permutations Suitable for DES-like Cryptosystems [J].
Carlet C. ;
Charpin P. ;
Zinoviev V. .
Designs, Codes and Cryptography, 1998, 15 (2) :125-156
[5]  
Coulter RS, 1998, ACTA ARITH, V86, P217
[6]  
Coulter RS, 2002, FINITE FIELDS TH APP, V8, P397, DOI [10.1006/ffta2001.0348, 10.1006/ffta.2001.0348]
[7]   Cyclotomic linear codes of order 3 [J].
Ding, Cunsheng ;
Niederreiter, Harald .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (06) :2274-2277
[8]   The Subfield Codes of Ovoid Codes [J].
Ding, Cunsheng ;
Heng, Ziling .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) :4715-4729
[9]   A construction of binary linear codes from Boolean functions [J].
Ding, Cunsheng .
DISCRETE MATHEMATICS, 2016, 339 (09) :2288-2303
[10]   Linear Codes From Some 2-Designs [J].
Ding, Cunsheng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (06) :3265-3275