A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions

被引:15
作者
Ahmad, Bashir [1 ]
Alghanmi, Madeaha [1 ]
Ntouyas, Sodris K. [1 ,2 ]
Alsaedi, Ahmed [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
来源
AIMS MATHEMATICS | 2019年 / 4卷 / 01期
关键词
differential equations and inclusion; generalized Caputo derivative; fractional integral; existence; fixed point; EXISTENCE;
D O I
10.3934/Math.2019.1.26
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new kind of generalized fractional integral boundary conditions and develop the existence theory for a fractional differential equation involving generalized Caputo-type fractional derivative equipped with these conditions. We also study the inclusion case of the given problem. Examples are constructed to demonstrate the application of the obtained results.
引用
收藏
页码:26 / 42
页数:17
相关论文
共 29 条
  • [1] Achar B.N.N., 2013, Adv. Math. Phys, V2013, P1, DOI [10.1155/2013/290216, DOI 10.1155/2013/290216]
  • [2] Ahmad B., 2017, Hadamard-type fractional differential equations, inclusions and inequalities
  • [3] Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions
    Ahmad, Bashir
    Alghanmi, Madeaha
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 84 : 111 - 117
  • [4] Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions
    Ahmad, Bashir
    Luca, Rodica
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 104 : 378 - 388
  • [5] Existence results for fractional differential inclusions with Erdelyi-Kober fractional integral conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2017, 25 (02): : 5 - 24
  • [6] A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 52 : 9 - 14
  • [7] Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06):
  • [8] Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations
    Baleanu, Dumitru
    Wu, Guo-Cheng
    Zeng, Sheng-Da
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 99 - 105
  • [9] Existence results for fractional order functional differential equations with infinite delay
    Benchohra, A.
    Henderson, J.
    Ntouyas, S. K.
    Ouahab, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1340 - 1350
  • [10] ON NONLINEAR CONTRACTIONS
    BOYD, DW
    WONG, JSW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) : 458 - &