Vector solutions of the coupled discrete conformable fractional nonlinear Schro•dinger equations

被引:9
作者
Mou, Da-Sheng [1 ]
Dai, Chao-Qing [1 ]
机构
[1] Zhejiang A&F Univ, Linan 311300, Zhejiang, Peoples R China
来源
OPTIK | 2022年 / 258卷
关键词
Conformable fractional derivative; Modified discrete Riccati equation mapping    method; Coupled discrete conformable fractional; nonlinear Schrodinger equations; SOLITONS;
D O I
10.1016/j.ijleo.2022.168859
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By considering the conformable fractional derivative to modify the discrete Riccati equation mapping method, we obtain rich vector exact solutions for the coupled discrete conformable fractional nonlinear Schro center dot dinger equations, including the vector bright solitons, the vector dark solitons and the vector trigonometric function solutions. The parameter range existing these vector exact solutions is also given. The influence of parameters related to the group velocity and the effect of fractional derivatives on the amplitude modulation of wave is investigated.
引用
收藏
页数:10
相关论文
共 25 条
[11]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[12]   PEIERLS-NABARRO POTENTIAL BARRIER FOR HIGHLY LOCALIZED NONLINEAR MODES [J].
KIVSHAR, YS ;
CAMPBELL, DK .
PHYSICAL REVIEW E, 1993, 48 (04) :3077-3081
[13]   Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology [J].
Kumar, Dipankar ;
Seadawy, Aly R. ;
Joardar, Atish Kumar .
CHINESE JOURNAL OF PHYSICS, 2018, 56 (01) :75-85
[14]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[15]   OBSERVATION OF NONLINEAR LOCALIZED MODES IN AN ELECTRICAL LATTICE [J].
MARQUIE, P ;
BILBAULT, JM ;
REMOISSENET, M .
PHYSICAL REVIEW E, 1995, 51 (06) :6127-6133
[16]   Discrete localized excitations for discrete conformable fractional cubic-quintic Ginzburg-Landau model possessing the non-local quintic term [J].
Mou, Da-Sheng ;
Fang, Jia-Jie ;
Fan, Yan .
OPTIK, 2021, 244
[18]   SOLITONS IN POLYACETYLENE [J].
SU, WP ;
SCHRIEFFER, JR ;
HEEGER, AJ .
PHYSICAL REVIEW LETTERS, 1979, 42 (25) :1698-1701
[19]   Discrete solitons and breathers with dilute Bose-Einstein condensates [J].
Trombettoni, A ;
Smerzi, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (11) :2353-2356
[20]   Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation [J].
Wang, Ben-Hai ;
Wang, Yue-Yue ;
Dai, Chao-Qing ;
Chen, Yi-Xiang .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) :4699-4707