Large and reversible inverse magnetocaloric effect in Ni48.1Co2.9Mn35.0In14.0 metamagnetic shape memory microwire

被引:34
作者
Qu, Y. H. [1 ]
Cong, D. Y. [1 ]
Chen, Z. [1 ]
Gui, W. Y. [1 ]
Sun, X. M. [1 ]
Li, S. H. [1 ]
Ma, L. [2 ]
Wang, Y. D. [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, 30 Xueyuan Rd, Beijing 100083, Peoples R China
[2] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
GIANT; TRANSITION;
D O I
10.1063/1.5000450
中图分类号
O59 [应用物理学];
学科分类号
摘要
High-performance magnetocaloric materials should have a large reversible magnetocaloric effect and good heat exchange capability. Here, we developed a Ni48.1Co2.9Mn35.0In14.0 metamagnetic shape memory microwire with a large and reversible inverse magnetocaloric effect. As compared to the bulk counterpart, the microwire shows a better combination of magnetostructural transformation parameters (magnetization difference across transformation Delta M, transformation entropy change Delta S-tr, thermal hysteresis Delta T-hys, and transformation interval Delta T-int) and thus greatly reduced critical field required for complete and reversible magnetic-field-induced transformation. A strong and reversible metamagnetic transition occurred in the microwire, which facilitates the achievement of large reversible magnetoresponsive effects. Consequently, a large and reversible magnetic-field-induced entropy change Delta S-m of 12.8 J kg(-1) K-1 under 5 T was achieved in the microwire, which is the highest value reported heretofore in Ni-Mn-based magnetic shape memory wires. Furthermore, since microwires have a high surface/volume ratio, they exhibit very good heat exchange capability. The present Ni48.1Co2.9Mn35.0In14.0 microwire shows great potential for magnetic refrigeration. This study may stimulate further development of high-performance magnetocaloric wires for high-efficiency and environmentally friendly solid-state cooling. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 38 条
[1]   Adiabatic magnetocaloric effect in Ni50Mn35In15 ribbons [J].
Alvarez-Alonso, P. ;
Aguilar-Ortiz, C. O. ;
Camarillo, J. P. ;
Salazar, D. ;
Flores-Zuniga, H. ;
Chernenko, V. A. .
APPLIED PHYSICS LETTERS, 2016, 109 (21)
[2]   The "colossal" magnetocaloric effect in Mn1-xFexAs: What are we really measuring? [J].
Balli, Mohamed ;
Fruchart, Daniel ;
Gignoux, Damien ;
Zach, Ryszard .
APPLIED PHYSICS LETTERS, 2009, 95 (07)
[3]   Entropy change of a Ni45.5Co4.5Mn37In13 single crystal studied by scanning calorimetry in high magnetic fields: Field dependence of the magnetocaloric effect [J].
Bourgault, D. ;
Porcar, L. ;
Rivoirard, S. ;
Courtois, P. ;
Hardy, V. .
APPLIED PHYSICS LETTERS, 2015, 107 (09)
[4]   Amorphous glass-covered magnetic wires:: Preparation, properties, applications [J].
Chiriac, H ;
Ovári, TA .
PROGRESS IN MATERIALS SCIENCE, 1996, 40 (05) :333-407
[5]   Microstructure and magnetocaloric properties of melt-extracted La-Fe-Si microwires [J].
Dong, J. D. ;
Yan, A. R. ;
Liu, J. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 357 :73-76
[6]   Ni-Mn-Ga ferromagnetic shape memory wires [J].
Gomez-Polo, C. ;
Perez-Landazabal, J. I. ;
Recarte, V. ;
Sanchez-Alarcos, V. ;
Badini-Confalonieri, G. ;
Vazquez, M. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (12)
[7]   Large reversible magnetocaloric effect in Ni-Mn-In-Co [J].
Gottschall, Tino ;
Skokov, Konstantin P. ;
Frincu, Bianca ;
Gutfleisch, Oliver .
APPLIED PHYSICS LETTERS, 2015, 106 (02)
[8]   Magnetocaloric materials [J].
Gschneidner, KA ;
Pecharsky, VK .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :387-429
[9]   Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy [J].
Huang, L. ;
Cong, D. Y. ;
Ma, L. ;
Nie, Z. H. ;
Wang, Z. L. ;
Suo, H. L. ;
Ren, Y. ;
Wang, Y. D. .
APPLIED PHYSICS LETTERS, 2016, 108 (03)
[10]   Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy [J].
Huang, L. ;
Cong, D. Y. ;
Suo, H. L. ;
Wang, Y. D. .
APPLIED PHYSICS LETTERS, 2014, 104 (13)