Deep attention aware feature learning for person re-Identification

被引:58
作者
Chen, Yifan [2 ]
Wang, Han [2 ]
Sun, Xiaolu [3 ]
Fan, Bin [1 ]
Tang, Chu [3 ]
Zeng, Hui [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing, Peoples R China
[2] Tsinghua Univ, Beijing, Peoples R China
[3] Addx Technol, Beijing, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Person re-identification; Attention learning; Multi-task learning; NETWORK;
D O I
10.1016/j.patcog.2022.108567
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A B S T R A C T Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-identification, however, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the ability of predicting attention maps as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attention maps have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) is proposed to make the feature maps obtained by backbone could focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) is proposed to make the extracted features can be decoupled into several groups that are separately responsible for different body parts, thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet [1] and Bag of Tricks [2]) and observed significant performance improvement on five widely used datasets. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 47 条
[1]  
Ahmed E, 2015, PROC CVPR IEEE, P3908, DOI 10.1109/CVPR.2015.7299016
[2]   Deep-Person: Learning discriminative deep features for person Re-Identification [J].
Bai, Xiang ;
Yang, Mingkun ;
Huang, Tengteng ;
Dou, Zhiyong ;
Yu, Rui ;
Xu, Yongchao .
PATTERN RECOGNITION, 2020, 98
[3]   OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields [J].
Cao, Zhe ;
Hidalgo, Gines ;
Simon, Tomas ;
Wei, Shih-En ;
Sheikh, Yaser .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (01) :172-186
[4]   SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Nie, Liqiang ;
Shao, Jian ;
Liu, Wei ;
Chua, Tat-Seng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6298-6306
[5]   ABD-Net: Attentive but Diverse Person Re-Identification [J].
Chen, Tianlong ;
Ding, Shaojin ;
Xie, Jingyi ;
Yuan, Ye ;
Chen, Wuyang ;
Yang, Yang ;
Ren, Zhou ;
Wang, Zhangyang .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :8350-8360
[6]   Cascaded Pyramid Network for Multi-Person Pose Estimation [J].
Chen, Yilun ;
Wang, Zhicheng ;
Peng, Yuxiang ;
Zhang, Zhiqiang ;
Yu, Gang ;
Sun, Jian .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7103-7112
[7]   Person Re-Identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function [J].
Cheng, De ;
Gong, Yihong ;
Zhou, Sanping ;
Wang, Jinjun ;
Zheng, Nanning .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1335-1344
[8]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[9]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[10]  
Hermans A., 2017, arXiv