Site-specific ubiquitination affects protein energetics and proteasomal degradation

被引:44
作者
Carroll, Emma C. [1 ]
Greene, Eric R. [1 ]
Martin, Andreas [1 ,2 ,3 ]
Marqusee, Susan [1 ,3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, QB3 Inst Quantitat Biosci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Chan Zuckerberg Biohub, San Francisco, CA 94115 USA
基金
美国国家卫生研究院;
关键词
STABILITY; REVEALS; STATES; TAG;
D O I
10.1038/s41589-020-0556-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Changes in the cellular environment modulate protein energy landscapes to drive important biology, with consequences for signaling, allostery and other vital processes. The effects of ubiquitination are particularly important because of their potential influence on degradation by the 26S proteasome. Moreover, proteasomal engagement requires unstructured initiation regions that many known proteasome substrates lack. To assess the energetic effects of ubiquitination and how these manifest at the proteasome, we developed a generalizable strategy to produce isopeptide-linked ubiquitin within structured regions of a protein. The effects on the energy landscape vary from negligible to dramatic, depending on the protein and site of ubiquitination. Ubiquitination at sensitive sites destabilizes the native structure and increases the rate of proteasomal degradation. In well-folded proteins, ubiquitination can even induce the requisite unstructured regions needed for proteasomal engagement. Our results indicate a biophysical role of site-specific ubiquitination as a potential regulatory mechanism for energy-dependent substrate degradation.
引用
收藏
页码:866 / +
页数:15
相关论文
共 53 条
[21]  
Kamadurai H.B., 2013, Elife, V2, P1
[22]   Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation [J].
Kenniston, JA ;
Burton, RE ;
Siddiqui, SM ;
Baker, TA ;
Sauer, RT .
JOURNAL OF STRUCTURAL BIOLOGY, 2004, 146 (1-2) :130-140
[23]   PH-DEPENDENCE OF THE STABILITY OF BARSTAR TO CHEMICAL AND THERMAL-DENATURATION [J].
KHURANA, R ;
HATE, AT ;
NATH, U ;
UDGAONKAR, JB .
PROTEIN SCIENCE, 1995, 4 (06) :1133-1144
[24]   Structure and function of a HECT domain ubiquitin-binding site [J].
Kim, Hyung Cheol ;
Steffen, Alanna M. ;
Oldham, Michael L. ;
Chen, Jue ;
Huibregtse, Jonm. .
EMBO REPORTS, 2011, 12 (04) :334-341
[25]   The Ubiquitin Code [J].
Komander, David ;
Rape, Michael .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 81, 2012, 81 :203-229
[26]   ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal [J].
Lee, C ;
Schwartz, MP ;
Prakash, S ;
Iwakura, M ;
Matouschek, A .
MOLECULAR CELL, 2001, 7 (03) :627-637
[27]   Ensemble-based signatures of energy propagation in proteins: A new view of an old phenomenon [J].
Liu, T ;
Whitten, ST ;
Hilser, VJ .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 62 (03) :728-738
[28]   Protein unfolding by a AAA plus protease is dependent on ATP-hydrolysis rates and substrate energy landscapes [J].
Martin, Andreas ;
Baker, Tania A. ;
Sauer, Robert T. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (02) :139-145
[29]   Conformational switching of the 26S proteasome enables substrate degradation [J].
Matyskiela, Mary E. ;
Lander, Gabriel C. ;
Martin, Andreas .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (07) :781-+
[30]   Ubiquitylation Directly Induces Fold Destabilization of Proteins [J].
Morimoto, Daichi ;
Walinda, Erik ;
Fukada, Harumi ;
Sugase, Kenji ;
Shirakawa, Masahiro .
SCIENTIFIC REPORTS, 2016, 6