Site-specific ubiquitination affects protein energetics and proteasomal degradation

被引:37
|
作者
Carroll, Emma C. [1 ]
Greene, Eric R. [1 ]
Martin, Andreas [1 ,2 ,3 ]
Marqusee, Susan [1 ,3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, QB3 Inst Quantitat Biosci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Chan Zuckerberg Biohub, San Francisco, CA 94115 USA
基金
美国国家卫生研究院;
关键词
STABILITY; REVEALS; STATES; TAG;
D O I
10.1038/s41589-020-0556-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Changes in the cellular environment modulate protein energy landscapes to drive important biology, with consequences for signaling, allostery and other vital processes. The effects of ubiquitination are particularly important because of their potential influence on degradation by the 26S proteasome. Moreover, proteasomal engagement requires unstructured initiation regions that many known proteasome substrates lack. To assess the energetic effects of ubiquitination and how these manifest at the proteasome, we developed a generalizable strategy to produce isopeptide-linked ubiquitin within structured regions of a protein. The effects on the energy landscape vary from negligible to dramatic, depending on the protein and site of ubiquitination. Ubiquitination at sensitive sites destabilizes the native structure and increases the rate of proteasomal degradation. In well-folded proteins, ubiquitination can even induce the requisite unstructured regions needed for proteasomal engagement. Our results indicate a biophysical role of site-specific ubiquitination as a potential regulatory mechanism for energy-dependent substrate degradation.
引用
收藏
页码:866 / +
页数:15
相关论文
共 50 条
  • [1] Site-specific ubiquitination affects protein energetics and proteasomal degradation
    Emma C. Carroll
    Eric R. Greene
    Andreas Martin
    Susan Marqusee
    Nature Chemical Biology, 2020, 16 : 866 - 875
  • [2] Site-specific ubiquitination: Deconstructing the degradation tag
    Carroll, Emma C.
    Marqusee, Susan
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 73
  • [3] A Pyrrolysine Analogue for Site-Specific Protein Ubiquitination
    Li, Xin
    Fekner, Tomasz
    Ottesen, Jennifer J.
    Chan, Michael K.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (48) : 9184 - 9187
  • [4] Chemical methods for protein site-specific ubiquitination
    Gui, Weijun
    Davidson, Gregory A.
    Zhuang, Zhihao
    RSC CHEMICAL BIOLOGY, 2021, 2 (02): : 450 - 467
  • [5] Ubiquitination Modulates a Protein Energy Landscape Site-Specifically with Consequences for Proteasomal Degradation
    Carroll, Emma
    Greene, Eric R.
    Martin, Andreas
    Marqusee, Susan
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 337A - 337A
  • [6] Site-specific degradation of myelin basic protein by the proteasome
    Belogurov, A. A., Jr.
    Ponomarenko, N. A.
    Govorun, V. M.
    Gabibov, A. G.
    Bacheva, A. V.
    DOKLADY BIOCHEMISTRY AND BIOPHYSICS, 2009, 425 (01) : 68 - 72
  • [7] Site-specific degradation of myelin basic protein by the proteasome
    A. A. Belogurov
    N. A. Ponomarenko
    V. M. Govorun
    A. G. Gabibov
    A. V. Bacheva
    Doklady Biochemistry and Biophysics, 2009, 425 : 68 - 72
  • [8] Traceless and Site-Specific Ubiquitination of Recombinant Proteins
    Virdee, Satpal
    Kapadnis, Prashant B.
    Elliott, Thomas
    Lang, Kathrin
    Madrzak, Julia
    Nguyen, Duy P.
    Riechmann, Lutz
    Chin, Jason W.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (28) : 10708 - 10711
  • [9] ENERGETICS OF SITE-SPECIFIC PROTEIN-DNA INTERACTIONS IN PHAGE-LAMBDA
    KOBLAN, KS
    ACKERS, GK
    FASEB JOURNAL, 1992, 6 (01): : A489 - A489
  • [10] Human disorders of ubiquitination and proteasomal degradation
    Jiang, YH
    Beaudet, AL
    CURRENT OPINION IN PEDIATRICS, 2004, 16 (04) : 419 - 426