Site-specific ubiquitination affects protein energetics and proteasomal degradation

被引:44
作者
Carroll, Emma C. [1 ]
Greene, Eric R. [1 ]
Martin, Andreas [1 ,2 ,3 ]
Marqusee, Susan [1 ,3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mol & Cell Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, QB3 Inst Quantitat Biosci, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[5] Chan Zuckerberg Biohub, San Francisco, CA 94115 USA
基金
美国国家卫生研究院;
关键词
STABILITY; REVEALS; STATES; TAG;
D O I
10.1038/s41589-020-0556-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Changes in the cellular environment modulate protein energy landscapes to drive important biology, with consequences for signaling, allostery and other vital processes. The effects of ubiquitination are particularly important because of their potential influence on degradation by the 26S proteasome. Moreover, proteasomal engagement requires unstructured initiation regions that many known proteasome substrates lack. To assess the energetic effects of ubiquitination and how these manifest at the proteasome, we developed a generalizable strategy to produce isopeptide-linked ubiquitin within structured regions of a protein. The effects on the energy landscape vary from negligible to dramatic, depending on the protein and site of ubiquitination. Ubiquitination at sensitive sites destabilizes the native structure and increases the rate of proteasomal degradation. In well-folded proteins, ubiquitination can even induce the requisite unstructured regions needed for proteasomal engagement. Our results indicate a biophysical role of site-specific ubiquitination as a potential regulatory mechanism for energy-dependent substrate degradation.
引用
收藏
页码:866 / +
页数:15
相关论文
共 53 条
[1]   The 26S Proteasome Utilizes a Kinetic Gateway to Prioritize Substrate Degradation [J].
Bard, Jared A. M. ;
Bashore, Charlene ;
Dong, Ken C. ;
Martin, Andreas .
CELL, 2019, 177 (02) :286-+
[2]   Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome [J].
Bashore, Charlene ;
Dambacher, Corey M. ;
Goodall, Ellen A. ;
Matyskiela, Mary E. ;
Lander, Gabriel C. ;
Martin, Andreas .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2015, 22 (09) :712-U94
[3]   Studying the folding of multidomain proteins [J].
Batey, Sarah ;
Nickson, Adrian A. ;
Clarke, Jane .
HFSP JOURNAL, 2008, 2 (06) :365-377
[4]   Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA plus unfoldase [J].
Beckwith, Robyn ;
Estrin, Eric ;
Worden, Evan J. ;
Martin, Andreas .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (10) :1164-+
[5]   Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead [J].
Bondeson, Daniel P. ;
Smith, Blake E. ;
Burslem, George M. ;
Buhimschi, Alexandru D. ;
Hines, John ;
Jaime-Figueroa, Saul ;
Wang, Jing ;
Hamman, Brian D. ;
Ishchenko, Alexey ;
Crews, Craig M. .
CELL CHEMICAL BIOLOGY, 2018, 25 (01) :78-+
[6]   The mechanical stability of ubiquitin is linkage dependent [J].
Carrion-Vazquez, M ;
Li, HB ;
Lu, H ;
Marszalek, PE ;
Oberhauser, AF ;
Fernandez, JM .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :738-743
[7]   Polyubiquitin-Photoactivatable Crosslinking Reagents for Mapping Ubiquitin Interactome Identify Rpn1 as a Proteasome Ubiquitin-Associating Subunit [J].
Chojnacki, Michal ;
Mansour, Wissam ;
Hameed, Dharjath S. ;
Singh, Rajesh K. ;
El Oualid, Farid ;
Rosenzweig, Rina ;
Nakasone, Mark A. ;
Yu, Zanlin ;
Glaser, Fabian ;
Kay, Lewis E. ;
Fushman, David ;
Ovaa, Huib ;
Glickman, Michael H. .
CELL CHEMICAL BIOLOGY, 2017, 24 (04) :443-+
[8]   Ubiquitin receptors are required for substrate-mediated activation of the proteasome's unfolding ability [J].
Cundiff, Mary D. ;
Hurley, Christina M. ;
Wong, Jeremy D. ;
Boscia, Joseph A. ;
Bashyal, Aarti ;
Rosenberg, Jake ;
Reichard, Eden L. ;
Nassif, Nicholas D. ;
Brodbelt, Jennifer S. ;
Kraut, Daniel A. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation [J].
de la Pena, Andres H. ;
Goodall, Ellen A. ;
Gates, Stephanie N. ;
Lander, Gabriel C. ;
Martin, Andreas .
SCIENCE, 2018, 362 (6418) :1018-+
[10]  
Debelouchina GT, 2017, NAT CHEM BIOL, V13, P105, DOI [10.1038/NCHEMBIO.2235, 10.1038/nchembio.2235]