Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen

被引:277
作者
Loi, Sherene [1 ,2 ]
Haibe-Kains, Benjamin [1 ,3 ]
Desmedt, Christine [1 ]
Wirapati, Pratyaksha [4 ,5 ]
Lallemand, Francoise [1 ]
Tutt, Andrew M. [6 ]
Gillet, Cheryl [6 ]
Ellis, Paul [6 ]
Ryder, Kenneth [6 ]
Reid, James F. [7 ,9 ]
Daidone, Maria G. [9 ]
Pierotti, Marco A. [7 ,9 ]
Berns, Els Mjj [8 ]
Jansen, Maurice P. H. M. [8 ]
Foekens, John A. [8 ]
Delorenzi, Mauro [4 ,5 ]
Bontempi, Gianluca [3 ]
Piccart, Martine J. [1 ]
Sotiriou, Christos [1 ]
机构
[1] Inst Jules Bordet, Funct Genom Unit, B-1000 Brussels, Belgium
[2] Peter MacCallum Canc Inst, Melbourne, Vic, Australia
[3] Univ Libre Bruxelles, Machine Learning Grp, Brussels, Belgium
[4] Swiss Inst Canc Res, NCCR Mol Oncol, Epalinges, Switzerland
[5] Swiss Inst Bioinformat, Epalinges, Switzerland
[6] Guys Hosp, London SE1 9RT, England
[7] Fdn Ist FIRC Oncol Mol IFOM, Milan, Italy
[8] Erasmus MC Daniel JNI, Rotterdam, Netherlands
[9] Fdn IRCCS Ist Nazl Tumori, Dept Expt Oncol, Milan, Italy
关键词
D O I
10.1186/1471-2164-9-239
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Estrogen receptor positive (ER+) breast cancers (BC) are heterogeneous with regard to their clinical behavior and response to therapies. The ER is currently the best predictor of response to the anti-estrogen agent tamoxifen, yet up to 30-40% of ER+ BC will relapse despite tamoxifen treatment. New prognostic biomarkers and further biological understanding of tamoxifen resistance are required. We used gene expression profiling to develop an outcome-based predictor using a training set of 255 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. We used clusters of highly correlated genes to develop our predictor to facilitate both signature stability and biological interpretation. Independent validation was performed using 362 tamoxifen-treated ER+ BC samples obtained from multiple institutions and treated with tamoxifen only in the adjuvant and metastatic settings. Results: We developed a gene classifier consisting of 181 genes belonging to 13 biological clusters. In the independent set of adjuvantly-treated samples, it was able to define two distinct prognostic groups (HR 2.01 95% CI: 1.29-3.13; p = 0.002). Six of the 13 gene clusters represented pathways involved in cell cycle and proliferation. In 112 metastatic breast cancer patients treated with tamoxifen, one of the classifier components suggesting a cellular inflammatory mechanism was significantly predictive of response. Conclusion: We have developed a gene classifier that can predict clinical outcome in tamoxifen-treated ER+ BC patients. Whilst our study emphasizes the important role of proliferation genes in prognosis, our approach proposes other genes and pathways that may elucidate further mechanisms that influence clinical outcome and prediction of response to tamoxifen.
引用
收藏
页数:12
相关论文
共 24 条
[1]   Semi-supervised methods to predict patient survival from gene expression data [J].
Bair, E ;
Tibshirani, R .
PLOS BIOLOGY, 2004, 2 (04) :511-522
[2]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[3]  
COCHRAN W. G., 1937, J. Roy. Statist. Soc. 1937., (Suppl.), V4, P102
[4]   Reliable gene signatures for microarray classification:: assessment of stability and performance [J].
Davis, Chad A. ;
Gerick, Fabian ;
Hintermair, Volker ;
Friedel, Caroline C. ;
Fundel, Katrin ;
Kueffner, Robert ;
Zimmer, Ralf .
BIOINFORMATICS, 2006, 22 (19) :2356-2363
[5]   Outcome signature genes in breast cancer: is there a unique set? [J].
Ein-Dor, L ;
Kela, I ;
Getz, G ;
Givol, D ;
Domany, E .
BIOINFORMATICS, 2005, 21 (02) :171-178
[6]  
HAIBEKAINS B, 2008, STUDIES COMPUTATIONA
[7]   Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling [J].
Jansen, MPHM ;
Foekens, JA ;
van Staveren, IL ;
Dirkzwager-Kiel, MM ;
Ritstier, K ;
Look, MP ;
Meijer-van Gelder, ME ;
Sieuwerts, AM ;
Portengen, H ;
Dorssers, LCJ ;
Klijn, JGM ;
Berns, EMJJ .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (04) :732-740
[8]   On combining classifiers [J].
Kittler, J ;
Hatef, M ;
Duin, RPW ;
Matas, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1998, 20 (03) :226-239
[9]   RECK is a target of Epstein-Barr virus latent membrane protein 1 [J].
Liu, LT ;
Peng, JP ;
Chang, HC ;
Hung, WC .
ONCOGENE, 2003, 22 (51) :8263-8270
[10]   Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade [J].
Loi, Sherene ;
Haibe-Kains, Benjamin ;
Desmedt, Christine ;
Lallemand, Francoise ;
Tutt, Andrew M. ;
Gillet, Cheryl ;
Ellis, Paul ;
Harris, Adrian ;
Bergh, Jonas ;
Foekens, John A. ;
Klijn, Jan G. M. ;
Larsimont, Denis ;
Buyse, Marc ;
Bontempi, Gianluca ;
Delorenzi, Mauro ;
Piccart, Martine J. ;
Sotiriou, Christos .
JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (10) :1239-1246