The differential equation for Jacobi-Sobolev orthogonal polynomials with two linear perturbutions

被引:4
|
作者
Markett, Clemens [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl far Math, Templergraben 55, D-52062 Aachen, Germany
关键词
Sobolev orthogonal polynomials; Higher-order differential equations; Jacobi-Sobolev differential equation; Jacobi-Sobolev polynomials; Laguerre-Sobolev differential equation; OPERATORS;
D O I
10.1016/j.jat.2022.105782
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explicitly determine the higher-order differential equation for the Jacobi-Sobolev polynomials which extend the classical Jacobi polynomials with parameters alpha is an element of N0, beta > -1 by two linear perturbations. More precisely, these polynomials are orthogonal with respect to a discrete Sobolev inner product which is associated with the Jacobi measure on the interval [-1, 1] and two point masses at the right end point involving functions and their first derivatives. The corresponding Jacobi-Sobolev differential operator of order 4 alpha + 10 is appropriately defined by four elementary terms reflecting the influence of the point masses. Moreover, we prove that the new operator is symmetric with respect to the Sobolev inner product. This fundamental property readily implies the orthogonality of the Jacobi-Sobolev polynomials in the inner product space. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Differential equations for discrete Jacobi-Sobolev orthogonal polynomials
    Duran, Antonio J.
    de la Iglesia, Manuel D.
    JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) : 191 - 234
  • [2] On Fourier series of Jacobi-Sobolev orthogonal polynomials
    Marcellán, F
    Osilenker, BP
    Rocha, IA
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (05) : 673 - 699
  • [3] Analytic properties of nondiagonal Jacobi-Sobolev orthogonal polynomials
    Moreno-Balcázar, JJ
    Martínez-Finkelshtein, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) : 393 - 401
  • [4] Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
    Dimitrov, Dimitar K.
    Mello, Mirela V.
    Rafaeli, Fernando R.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (03) : 263 - 276
  • [5] Eigenvalue Problem for Discrete Jacobi-Sobolev Orthogonal Polynomials
    Manas-Manas, Juan F.
    Moreno-Balcazar, Juan J.
    Wellman, Richard
    MATHEMATICS, 2020, 8 (02)
  • [6] Differential Properties of Jacobi-Sobolev Polynomials and Electrostatic Interpretation
    Pijeira-Cabrera, Hector
    Quintero-Roba, Javier
    Toribio-Milane, Juan
    MATHEMATICS, 2023, 11 (15)
  • [7] Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality
    Fejzullahu, B. Xh.
    Marcellan, F.
    Moreno-Balcazar, J. J.
    JOURNAL OF APPROXIMATION THEORY, 2013, 170 : 78 - 93
  • [8] Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials
    Manas-Manas, Juan F.
    Marcellan, Francisco
    Moreno-Balcazar, Juan J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 300 : 341 - 353
  • [9] Jacobi-Sobolev Orthogonal Polynomials: Asymptotics for N-Coherence of Measures
    Bujar Xh Fejzullahu
    Francisco Marcellán
    Journal of Inequalities and Applications, 2011
  • [10] Jacobi-Sobolev Orthogonal Polynomials: Asymptotics for N-Coherence of Measures
    Fejzullahu, Bujar Xh.
    Marcellan, Francisco
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,