Fixed-point iterations in determining the Tikhonov regularization parameter

被引:44
|
作者
Viloche Bazan, Fermin S. [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Math, BR-88040900 Florianopolis, SC, Brazil
关键词
D O I
10.1088/0266-5611/24/3/035001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review a Tikhonov parameter criterion based on the search for local minima of the function Psi(mu) (lambda) = x(lambda) y(mu) (lambda), mu > 0 where x(lambda) and y(lambda) are the squared residual norm and the squared solution norm, respectively, proposed earlier by Reginska (1996, SIAM J. Sci. Comput. 3 740). As a consequence, we demonstrate that extreme points of Psi(mu)(lambda) are fixed points of a related function, and then propose a fixed-point algorithm for choosing the Tikhonov parameter. The algorithm constructs a regularization parameter associated with the corner of the L-curve in log-log scale, thus yielding solutions with accuracy comparable to that of the L-curve method but at a lower computational cost. The performance of the algorithm on representative discrete ill-posed problems is evaluated and compared with results obtained by the L-curve method, generalized cross- validation and another fixed-point algorithm from the literature.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fixed-point iterations in determining a Tikhonov regularization parameter in Kirsch's factorization method
    Leem, Koung Hee
    Pelekanos, George
    Viloche Bazan, Fermin S.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (12) : 3747 - 3753
  • [2] An improved fixed-point algorithm for determining a Tikhonov regularization parameter
    Viloche Bazan, Fermin S.
    Francisco, Juliano B.
    INVERSE PROBLEMS, 2009, 25 (04)
  • [3] Tikhonov fixed-point regularization
    Moudafi, A
    OPTIMIZATION, 2000, 48 : 320 - 328
  • [4] ELIMINATION AND FIXED-POINT ITERATIONS
    MILASZEWICZ, JP
    ABDELMASIH, S
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 25 (05) : 43 - 53
  • [5] ADJOINTS OF FIXED-POINT ITERATIONS
    Taftaf, A.
    Pascual, V.
    Hascoet, L.
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS V - VI, 2014, : 5024 - 5034
  • [6] FIXED-POINT ISHIKAWA ITERATIONS
    KALINDE, AK
    RHOADES, BE
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 170 (02) : 600 - 606
  • [7] FIXED-POINT ITERATIONS OF NONEXPANSIVE MAPPINGS
    REICH, S
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (02) : 195 - 198
  • [8] FIXED-POINT ITERATIONS FOR REAL FUNCTIONS
    BORWEIN, D
    BORWEIN, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 157 (01) : 112 - 126
  • [9] AN ERROR BOUND FOR FIXED-POINT ITERATIONS
    SODERLIND, G
    BIT, 1984, 24 (03): : 391 - 393
  • [10] ANDERSON ACCELERATION FOR FIXED-POINT ITERATIONS
    Walker, Homer F.
    Ni, Peng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (04) : 1715 - 1735