Multilevel approximation of the gradient operator on an adaptive spherical geodesic grid

被引:3
作者
Behera, Ratikanta [1 ]
Mehra, Mani [1 ]
Kevlahan, N. K. -R. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Delhi, India
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Second generation wavelet; Gradient operator on the sphere; Spherical geodesic grid; Advection equation; Adaptive wavelet collocation method; WAVELET COLLOCATION METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; BAROTROPIC VORTICITY EQUATION; SHALLOW-WATER EQUATIONS; INTEGRATION; DIFFUSION; SCHEME;
D O I
10.1007/s10444-014-9382-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work presents a new adaptive multilevel approximation of the gradient operator on a recursively refined spherical geodesic grid. The multilevel structure provides a simple way to adapt the computation to the local structure of the gradient operator so that high resolution computations are performed only in regions where singularities or sharp transitions occur. This multilevel approximation of the gradient operator is used to solve the linear spherical advection equation for both time-independent and time-dependent wind field geophysical test cases. In contrast with other approximation schemes, this approach can be extended easily to other curved manifolds by choosing an appropriate coarse approximation and using recursive surface subdivision. The results indicate that the adaptive gradient calculation and the solution of spherical advection equation accurate, efficient and free of numerical dispersion.
引用
收藏
页码:663 / 689
页数:27
相关论文
共 36 条
  • [11] HEIKES R, 1995, MON WEATHER REV, V123, P1862, DOI 10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO
  • [12] 2
  • [13] A standard test case suite for two-dimensional linear transport on the sphere
    Lauritzen, P. H.
    Skamarock, W. C.
    Prather, M. J.
    Taylor, M. A.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2012, 5 (03) : 887 - 901
  • [14] Masuda Y., 1986, INTEGRATION SCHEME P, P317
  • [15] AN ADAPTIVE MULTILEVEL WAVELET SOLVER FOR ELLIPTIC EQUATIONS ON AN OPTIMAL SPHERICAL GEODESIC GRID
    Mehra, Mani
    Kevlahan, Nicholas K. -R.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06) : 3073 - 3086
  • [16] An adaptive wavelet collocation method for the solution of partial differential equations on the sphere
    Mehra, Mani
    Kevlahan, Nicholas K. -R.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (11) : 5610 - 5632
  • [17] MEYER Y, 1989, ANAL URBANA, V1
  • [18] Moving vortices on the sphere: A test case for horizontal advection problems
    Nair, Ramachandran D.
    Jablonowski, Christiane
    [J]. MONTHLY WEATHER REVIEW, 2008, 136 (02) : 699 - 711
  • [19] A class of deformational flow test cases for linear transport problems on the sphere
    Nair, Ramachandran D.
    Lauritzen, Peter H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (23) : 8868 - 8887
  • [20] Diffusion on a curved surface coupled to diffusion in the volume: Application to cell biology
    Novak, Igor L.
    Gao, Fei
    Choi, Yung-Sze
    Resasco, Diana
    Schaff, James C.
    Slepchenko, Boris M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (02) : 1271 - 1290