Multilevel approximation of the gradient operator on an adaptive spherical geodesic grid

被引:3
作者
Behera, Ratikanta [1 ]
Mehra, Mani [1 ]
Kevlahan, N. K. -R. [2 ]
机构
[1] Indian Inst Technol, Dept Math, Delhi, India
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Second generation wavelet; Gradient operator on the sphere; Spherical geodesic grid; Advection equation; Adaptive wavelet collocation method; WAVELET COLLOCATION METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; BAROTROPIC VORTICITY EQUATION; SHALLOW-WATER EQUATIONS; INTEGRATION; DIFFUSION; SCHEME;
D O I
10.1007/s10444-014-9382-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work presents a new adaptive multilevel approximation of the gradient operator on a recursively refined spherical geodesic grid. The multilevel structure provides a simple way to adapt the computation to the local structure of the gradient operator so that high resolution computations are performed only in regions where singularities or sharp transitions occur. This multilevel approximation of the gradient operator is used to solve the linear spherical advection equation for both time-independent and time-dependent wind field geophysical test cases. In contrast with other approximation schemes, this approach can be extended easily to other curved manifolds by choosing an appropriate coarse approximation and using recursive surface subdivision. The results indicate that the adaptive gradient calculation and the solution of spherical advection equation accurate, efficient and free of numerical dispersion.
引用
收藏
页码:663 / 689
页数:27
相关论文
共 36 条
  • [1] [Anonymous], 2003, Visualization and Mathematics III. Mathematics and Visualization
  • [2] Integration of barotropic vorticity equation over spherical geodesic grid using multilevel adaptive wavelet collocation method
    Behera, Ratikanta
    Mehra, Mani
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (07) : 5215 - 5226
  • [3] BENYU G, 1995, MATH COMPUT, V64, P1067
  • [4] Daubechies I, 1992, Lectures on Wavelets, V61
  • [5] An adaptive multiresolution scheme with local time stepping for evolutionary PDEs
    Domingues, Margarete O.
    Gomes, Sonia M.
    Roussel, Olivier
    Schneider, Kai
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (08) : 3758 - 3780
  • [6] Donoho D.L., 1992, 408 STANF U DEP STAT
  • [7] A BUTTERFLY SUBDIVISION SCHEME FOR SURFACE INTERPOLATION WITH TENSION CONTROL
    DYN, N
    LEVIN, D
    GREGORY, JA
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1990, 9 (02): : 160 - 169
  • [8] Differentiation of discrete multidimensional signals
    Farid, H
    Simoncelli, EP
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (04) : 496 - 508
  • [9] Maximum distance-gradient for robust image registration
    Gan, Rui
    Chung, Albert C. S.
    Liao, Shu
    [J]. MEDICAL IMAGE ANALYSIS, 2008, 12 (04) : 452 - 468
  • [10] Inspection of hexagonal and triangular C-grid discretizations of the shallow water equations
    Gassmann, Almut
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (07) : 2706 - 2721