A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES

被引:9
作者
Baensch, E. [1 ]
Brenner, A. [1 ]
机构
[1] Univ Erlangen Nurnberg, Appl Math 3, D-91058 Erlangen, Germany
关键词
a posteriori error analysis; projection methods; fractional step methods; Navier-Stokes equations; BDF2; reconstruction; backward Euler; NAVIER-STOKES EQUATIONS; PARABOLIC PROBLEMS; PROJECTION METHODS; ELLIPTIC RECONSTRUCTION; HEAT-EQUATION; DISCRETIZATION; APPROXIMATIONS; CONVERGENCE;
D O I
10.1137/15M102753X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results.
引用
收藏
页码:2323 / 2358
页数:36
相关论文
共 32 条
[11]   Stability and error of the variable two-step BDF for semilinear parabolic problems [J].
Emmrich E. .
Journal of Applied Mathematics and Computing, 2005, 19 (1-2) :33-55
[12]   A POSTERIORI ERROR CONTROL FOR DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROBLEMS [J].
Georgoulis, Emmanuil H. ;
Lakkis, Omar ;
Virtanen, Juha M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) :427-458
[13]   An overview of projection methods for incompressible flows [J].
Guermond, J. L. ;
Minev, P. ;
Shen, Jie .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (44-47) :6011-6045
[14]   A note on the Stokes operator and its powers [J].
Guermond J.-L. ;
Salgado A. .
Journal of Applied Mathematics and Computing, 2011, 36 (1-2) :241-250
[15]  
Guermond JL, 2004, MATH COMPUT, V73, P1719
[16]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .1. REGULARITY OF SOLUTIONS AND 2ND-ORDER ERROR-ESTIMATES FOR SPATIAL DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :275-311
[17]   AN A POSTERIORI ERROR ESTIMATE AND ADAPTIVE TIMESTEP CONTROL FOR A BACKWARD EULER DISCRETIZATION OF A PARABOLIC PROBLEM [J].
JOHNSON, C ;
NIE, YY ;
THOMEE, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) :277-291
[18]  
Karakatsani F, 2007, IMA J NUMER ANAL, V27, P741, DOI 10.1093/imanum/drI036
[19]   A posteriori error analysis of time-dependent Stokes problem by Chorin-Temam scheme [J].
Kharrat, N. ;
Mghazli, Z. .
CALCOLO, 2012, 49 (01) :41-61
[20]  
Kharrat N., 2010, ARIMA, V13, P33