A POSTERIORI ERROR ESTIMATES FOR PRESSURE-CORRECTION SCHEMES

被引:9
作者
Baensch, E. [1 ]
Brenner, A. [1 ]
机构
[1] Univ Erlangen Nurnberg, Appl Math 3, D-91058 Erlangen, Germany
关键词
a posteriori error analysis; projection methods; fractional step methods; Navier-Stokes equations; BDF2; reconstruction; backward Euler; NAVIER-STOKES EQUATIONS; PARABOLIC PROBLEMS; PROJECTION METHODS; ELLIPTIC RECONSTRUCTION; HEAT-EQUATION; DISCRETIZATION; APPROXIMATIONS; CONVERGENCE;
D O I
10.1137/15M102753X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A posteriori error estimates for time discretization of the incompressible Stokes equations by pressure-correction methods are presented. We rigorously prove global upper bounds for the incremental backward Euler scheme as well as for the two-step backward differential formula method (BDF2) in rotational form. Moreover, rate optimality of the estimators is stated for velocity (in the case of backward Euler and BDF2 in rotational form) and pressure (in the case of Euler). Computational experiments confirm the theoretical results.
引用
收藏
页码:2323 / 2358
页数:36
相关论文
共 32 条
[1]  
Akrivis G, 2006, MATH COMPUT, V75, P511, DOI 10.1090/S0025-5718-05-01800-4
[2]   A POSTERIORI ERROR ESTIMATES FOR THE TWO-STEP BACKWARD DIFFERENTIATION FORMULA METHOD FOR PARABOLIC EQUATIONS [J].
Akrivis, Georgios ;
Chatzipantelidis, Panagiotis .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (01) :109-132
[3]   Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods [J].
Akrivis, Georgios ;
Makridakis, Charalambos ;
Nochetto, Ricardo H. .
NUMERISCHE MATHEMATIK, 2009, 114 (01) :133-160
[4]   A POSTERIORI ERROR CONTROL FOR FULLY DISCRETE CRANK-NICOLSON SCHEMES [J].
Baensch, E. ;
Karakatsani, F. ;
Makridakis, Ch. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (06) :2845-2872
[5]  
Bergam A, 2005, MATH COMPUT, V74, P1117, DOI 10.1090/S0025-5718-04-01697-7
[6]   A posteriori analysis of the Chorin-Temam scheme for Stokes equations [J].
Boyaval, Sebastien ;
Picasso, Marco .
COMPTES RENDUS MATHEMATIQUE, 2013, 351 (23-24) :931-936
[7]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[8]   ON CONVERGENCE OF DISCRETE APPROXIMATIONS TO NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :341-&
[9]   A POSTERIORI ERROR ESTIMATES IN THE MAXIMUM NORM FOR PARABOLIC PROBLEMS [J].
Demlow, Alan ;
Lakkis, Omar ;
Makridakis, Charalambos .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :2157-2176
[10]  
Deuflhard P., 2002, Scientific Computing with Ordinary Differential Equations