Block copolymer binders with hard and soft segments for scalable fabrication of sulfide-based all-solid-state batteries

被引:13
|
作者
Lee, Jieun [1 ,2 ]
Choi, Jang Wook [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul, South Korea
基金
新加坡国家研究基金会; 瑞士国家科学基金会;
关键词
acrylate polymer; all-solid-state batteries; argyrodite; hard and soft segments; polybutadiene; LITHIUM-ION; ELECTROLYTES; CATHODES; SOLVENT;
D O I
10.1002/eom2.12193
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulfide-based all-solid-state batteries (ASSBs) have attracted much attention owing to their superior safety and potentially high-energy density. Nevertheless, sulfide-based ASSBs suffer from limited performance in terms of their cycle life and rate capability, which is closely related to interfacial degradation during cycling. Another weakness is the absence of manufacturing protocols. Having noted that the binder can play a pivotal role in both the cell performance and scale-up, here, we report poly(1,2-butadiene)-b-poly(methyl methacrylate) (PBD-b-PMMA) block copolymers as the binders. At the optimal ratio, the soft PBD segments and hard PMMA segments work synergistically to strengthen adhesion among particles in the electrode and introduce elasticity in the binder network, enabling the key battery performance indicators to be improved markedly. The systematic study also reveals the importance of the microscopic distributions of these two segments. This study signifies the appropriate combination of adhesion and elasticity in designing binders for sulfide-based ASSBs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] In Situ Deprotection of Polymeric Binders for Solution-Processible Sulfide-Based All-Solid-State Batteries
    Lee, Jieun
    Lee, Kyulin
    Lee, Taegeun
    Kim, Hyuntae
    Kim, Kyungsu
    Cho, Woosuk
    Coskun, Ali
    Char, Kookheon
    Choi, Jang Wook
    ADVANCED MATERIALS, 2020, 32 (37)
  • [2] Cathodic interface in sulfide-based all-solid-state lithium batteries
    Li, Nana
    Luo, Jiayao
    Zhu, Jinhui
    Zhuang, Xiaodong
    ENERGY STORAGE MATERIALS, 2023, 63
  • [3] Sulfide-based composite solid electrolyte films for all-solid-state batteries
    Li, Shenghao
    Yang, Zhihua
    Wang, Shu-Bo
    Ye, Mingqiang
    He, Hongcai
    Zhang, Xin
    Nan, Ce-Wen
    Wang, Shuo
    COMMUNICATIONS MATERIALS, 2024, 5 (01)
  • [4] Sulfide-based composite solid electrolyte films for all-solid-state batteries
    Shenghao Li
    Zhihua Yang
    Shu-Bo Wang
    Mingqiang Ye
    Hongcai He
    Xin Zhang
    Ce-Wen Nan
    Shuo Wang
    Communications Materials, 5
  • [5] Challenges and opportunities of practical sulfide-based all-solid-state batteries
    Ren, Dongsheng
    Lu, Languang
    Hua, Rui
    Zhu, Gaolong
    Liu, Xiang
    Mao, Yuqiong
    Rui, Xinyu
    Wang, Shan
    Zhao, Bosheng
    Cui, Hao
    Yang, Min
    Shen, Haorui
    Zhao, Chen-Zi
    Wang, Li
    He, Xiangming
    Liu, Saiyue
    Hou, Yukun
    Tan, Tiening
    Wang, Pengbo
    Nitta, Yoshiaki
    Ouyang, Minggao
    ETRANSPORTATION, 2023, 18
  • [6] Design of composite cathodes for sulfide-based all-solid-state batteries
    Jiang, Wei
    Zhu, Xinxin
    Liu, Yawen
    Zhao, Shu
    Ling, Min
    Wang, Liguang
    Liang, Chengdu
    ETRANSPORTATION, 2023, 17
  • [7] Sulfide-based solid electrolyte and electrode membranes for all-solid-state lithium batteries
    Chen, Zhenying
    Hou, Junbo
    Yang, Min
    Zhu, Jinhui
    Zhuang, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 502
  • [8] Rational Optimization of Cathode Composites for Sulfide-Based All-Solid-State Batteries
    Tron, Artur
    Hamid, Raad
    Zhang, Ningxin
    Beutl, Alexander
    NANOMATERIALS, 2023, 13 (02)
  • [9] Issues and Advances in Scaling up Sulfide-Based All-Solid-State Batteries
    Lee, Jieun
    Lee, Taegeun
    Char, Kookheon
    Kim, Ki Jae
    Choi, Jang Wook
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (17) : 3390 - 3402
  • [10] Sulfide-Based All-Solid-State Lithium–Sulfur Batteries: Challenges and Perspectives
    Xinxin Zhu
    Liguang Wang
    Zhengyu Bai
    Jun Lu
    Tianpin Wu
    Nano-Micro Letters, 2023, 15