Friction stir welding of CoCrNi medium-entropy alloy: Recrystallization behaviour and strengthening mechanism

被引:21
|
作者
Hu, Yanying [1 ]
Niu, Yitian [1 ]
Zhao, Yunqiang [2 ]
Yang, Weiqi [1 ]
Ma, Xianfeng [1 ]
Li, Jinglong [3 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
[2] Guangdong Acad Sci, China Ukraine Inst Welding, Guangdong Prov Key Lab Adv Welding Technol, Guangzhou 510650, Peoples R China
[3] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 848卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CoCrNi MEA; Friction stir welding; Mechanical twin; Dynamic recrystallization; Mechanical properties; STACKING-FAULT ENERGY; GRAIN-SIZE; HIGH-STRAIN; DEFORMATION; STRESS; MICROSTRUCTURE; AL; SUBSTRUCTURE; TOLERANCE; EVOLUTION;
D O I
10.1016/j.msea.2022.143361
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dynamic recrystallization (DRX), deformation-induced mechanical twins, and strengthening mechanism of CoCrNi equi-atomic medium-entropy alloy (MEA), welded by friction stir welding (FSW) at different welding speeds, were systematically investigated in this study. The results indicated that FSW led to grain refinement in the stir zones (SZs) with diameters fluctuating in the range of 2.1-9.6 mu m. The hardness was improved from ~154HV (base material, BM) to 238-263HV (SZ) by FSW. The yield strength and ultimate tensile strength of the optimal SZs were 601 MPa and 844 MPa, respectively, which were 260% and 134% higher than those of the as -received material, respectively. Analyses of DRX behaviour indicated that discontinuous DRX (DDRX), contin-uous DRX (CDRX), and geometric DRX (GDRX) were successively activated with increasing strain during FSW to facilitate grain refinement. The larger the grain size, the higher the fraction of mechanical twins. However, the thickness of the twins had a negative correlation with the grain size. Although a few HCP structures were formed on the twin boundaries, grain refinement and dislocation hardening mechanisms remained dominant in enhancing the mechanical properties of the SZs. The strength-ductility synergy by FSW, under low heat input conditions, was caused by the formation of thin mechanical twins in fine equiaxed grains. Thinner twins were more effective in transferring and homogenising plastic deformation, thereby contributing to the postponing of plastic instability and further promoting an excellent combination of strength and ductility. These findings confirm that FSW is a promising approach for strengthening the MEA for superior performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Strengthening CoCrNi medium-entropy alloy by tuning lattice defects
    Huang, Hua
    Wang, Jianying
    Yang, Hailin
    Ji, Shouxun
    Yu, Hailiang
    Liu, Zhilin
    SCRIPTA MATERIALIA, 2020, 188 : 216 - 221
  • [2] Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy
    Agustianingrum, Maya Putri
    Yoshida, Shuhei
    Tsuji, Nobuhiro
    Park, Nokeun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 : 866 - 872
  • [3] The effects of grain size and temperature on mechanical properties of CoCrNi medium-entropy alloy
    Zhang, Can
    Han, Ben
    Shi, Mingxing
    JOURNAL OF MOLECULAR MODELING, 2023, 29 (04)
  • [4] Synergistic effect by Al addition in improving mechanical performance of CoCrNi medium-entropy alloy
    Lee, Donghee
    Agustianingrum, Maya Putri
    Park, Nokeun
    Tsuji, Nobuhiro
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 800 : 372 - 378
  • [5] Strengthening of CoCrNi medium entropy alloy with gadolinium additions
    Lin, Yi-Siang
    Lu, Ying-Chou
    Hsueh, Chun-Hway
    VACUUM, 2023, 211
  • [6] Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy
    Yi, Jiang
    Zhuang, Xiaoqiang
    He, Jing
    He, Minglin
    Liu, Weihong
    Wang, Shuai
    CORROSION SCIENCE, 2021, 189
  • [7] Heavily twinned CoCrNi medium-entropy alloy with superior strength and crack resistance
    Feng, Xiaobin
    Yang, Haokun
    Fan, Rong
    Zhang, Wenqiang
    Meng, Fanling
    Gan, Bin
    Lu, Yang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 788
  • [8] Improved Wear Resistance of a Heterogeneous CoCrNi Medium-Entropy Alloy at Cryogenic Temperature
    Huang, Zhuobin
    Ren, Yue
    Luo, Dawei
    Zhou, Qing
    He, Yixuan
    Wang, Haifeng
    TRIBOLOGY LETTERS, 2022, 70 (04)
  • [9] High-temperature oxidation behaviour of CoCrNi medium-entropy alloy
    Agustianingrum, Maya Putri
    Lee, Unhae
    Park, Nokeun
    CORROSION SCIENCE, 2020, 173 (173)
  • [10] Friction stir welding of a carbon-doped CoCrFeNiMn high-entropy alloy
    Shaysultanov, D.
    Stepanov, N.
    Malopheyev, S.
    Vysotskiy, I.
    Sanin, V.
    Mironov, S.
    Kaibyshev, R.
    Salishchev, G.
    Zherebtsov, S.
    MATERIALS CHARACTERIZATION, 2018, 145 : 353 - 361