Determination of thermal conductivity of interfacial layer in nanofluids by equilibrium molecular dynamics simulation

被引:54
|
作者
Wang, Xin [1 ,2 ]
Jing, Dengwei [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Int Res Ctr Renewable Energy, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular dynamics simulation; Thermal conductivity; Interfacial layer; Nanofluids; Effective medium theory model; ENHANCEMENT; NANOLAYER;
D O I
10.1016/j.ijheatmasstransfer.2018.08.073
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, equilibrium molecular dynamics are performed to investigate the thickness and thermal conductivity of interfacial layer around the nanoparticle in dilute nanofluids. A nanofluids system of a 1-nm-diameter copper spherical nanoparticle immersing into argon base liquids and then a flat interface formed by liquid argon on the solid copper surface are studied. Green-Kubo formula is developed to calculate thermal conductivity of interfacial layer. Besides, the effect of solid-liquid interaction is studied. The nano-scale thin interfacial layer with more ordered structure and higher thermal conductivity than that of the base fluids is observed. Then the simulation results are incorporated into the modified Maxwell equation to calculate the effective thermal conductivity of nanofluids. The results indicate that the contribution of interfacial layer to thermal conductivity enhancement of nanofluids can be neglected. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:199 / 207
页数:9
相关论文
共 50 条
  • [31] Determination of nanolayer thickness and effective thermal conductivity of nanofluids
    Abbasov, Hakim F.
    JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2019, 40 (04) : 594 - 603
  • [32] Investigation of different nanoparticles properties on the thermal conductivity and viscosity of nanofluids by molecular dynamics simulation
    Zhang, Ruihao
    Qing, Shan
    Zhang, Xiaohui
    Luo, Zhumei
    Liu, Yiqing
    NANOTECHNOLOGY REVIEWS, 2023, 12 (01)
  • [33] Nanoparticles Shape Effect on Thermal Conductivity of Nanofluids: A Molecular Dynamics Study
    Roni, Md. Rakibul Hasan
    Morshed, A. K. M. M.
    Tikadar, Amitav
    Paul, Titan C.
    Khan, Jamil A.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 8, 2019,
  • [34] Thermal Analysis of Nanofluids Using Modeling and Molecular Dynamics Simulation
    Namboori, Krishnan P. K.
    Vasavi., C. S.
    Gopal, Varun K.
    Gopakumar, Deepa
    Ramachandran, K. I.
    Narayanan, Sabarish B.
    INTERNATIONAL CONFERENCE ON ADVANCED NANOMATERIALS AND NANOTECHNOLOGY (ICANN 2009), 2010, 1276 : 407 - 412
  • [35] INFLUENCE OF INTERFACIAL PHENOMENA ON VISCOSITY AND THERMAL CONDUCTIVITY OF NANOFLUIDS
    Morozova, Marina A.
    Novopashin, Sergey A.
    INTERFACIAL PHENOMENA AND HEAT TRANSFER, 2019, 7 (02) : 151 - 165
  • [36] The direct effect of interfacial nanolayers on thermal conductivity of nanofluids
    R. Alipour
    M. Ghoranneviss
    M. Mirzaee
    A. Jafari
    Heat and Mass Transfer, 2014, 50 : 1727 - 1735
  • [37] Effective thermal conductivity of nanofluids considering interfacial nano-shells
    Jiang, Haifeng
    Li, Hui
    Xu, Qianghui
    Shi, Lin
    MATERIALS CHEMISTRY AND PHYSICS, 2014, 148 (1-2) : 195 - 200
  • [38] Non-equilibrium molecular dynamics simulation of the thermal conductivity of crystals film
    Shao, BD
    Sun, ZW
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2006, 78 (02) : 138 - 141
  • [39] SIMULATION OF THERMAL CONDUCTIVITY OF NANOFLUIDS USING DISSIPATIVE PARTICLE DYNAMICS
    Yamada, Toru
    Asako, Yutaka
    Faghri, Mohammad
    Hong, Chungpyo
    PROCEEDINGS OF THE ASME MICRO/NANOSCALE HEAT AND MASS TRANSFER INTERNATIONAL CONFERENCE, 2012, 2012, : 819 - 827
  • [40] SIMULATION OF THERMAL CONDUCTIVITY OF NANOFLUIDS USING DISSIPATIVE PARTICLE DYNAMICS
    Yamada, Toru
    Asako, Yutaka
    Gregory, Otto J.
    Faghri, Mohammad
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2012, 61 (05) : 323 - 337