On the image inpainting problem from the viewpoint of a nonlocal Cahn-Hilliard type equation

被引:14
作者
Brkic, Antun Lovro [1 ]
Mitrovic, Darko [2 ]
Novak, Andrej [3 ]
机构
[1] Inst Phys, Bijenicka Cesta 46, Zagreb 10000, Croatia
[2] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[3] Univ Zagreb, Dept Phys, Fac Sci, Bijenicka Cesta 32, Zagreb, Croatia
基金
奥地利科学基金会;
关键词
Fractional calculus; Image inpainting; Partial differential equations; AUGMENTED LAGRANGIAN METHOD; DIFFUSION; MODEL; ALGORITHM; DYNAMICS;
D O I
10.1016/j.jare.2020.04.015
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motivated by the fact that the fractional Laplacean generates a wider choice of the interpolation curves than the Laplacean or bi-Laplacean, we propose a new non-local partial differential equation inspired by the Cahn-Hilliard model for recovering damaged parts of an image. We also note that our model is linear and that the computational costs are lower than those for the standard Cahn-Hilliard equation, while the inpainting results remain of high quality. We develop a numerical scheme for solving the resulting equations and provide an example of inpainting showing the potential of our method. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
引用
收藏
页码:67 / 76
页数:10
相关论文
共 35 条
[1]   Fractional diffusion equation-based image denoising model using CN-GL scheme [J].
Abirami, A. ;
Prakash, P. ;
Thangavel, K. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (6-7) :1222-1239
[2]   ANALYSIS AND APPROXIMATION OF A FRACTIONAL CAHN-HILLIARD EQUATION [J].
Ainsworth, Mark ;
Mao, Zhiping .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) :1689-1718
[3]   Fractional-order anisotropic diffusion for image denoising [J].
Bai, Jian ;
Feng, Xiang-Chu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) :2492-2502
[4]  
Bertalmío M, 2001, PROC CVPR IEEE, P355
[5]   Image inpainting [J].
Bertalmio, M ;
Sapiro, G ;
Caselles, V ;
Ballester, C .
SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, :417-424
[6]   Analysis of a two-scale Cahn-Hilliard model for binary image inpainting [J].
Bertozzi, Andrea ;
Esedoglu, Selim ;
Gillette, Alan .
MULTISCALE MODELING & SIMULATION, 2007, 6 (03) :913-936
[7]   Inpainting of binary images using the Cahn-Hilliard equation [J].
Bertozzi, Andrea L. ;
Esedoglu, Selim ;
Gillette, Alan .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) :285-291
[8]   A Fractional Inpainting Model Based on the Vector-Valued Cahn-Hilliard Equation [J].
Bosch, Jessica ;
Stoll, Martin .
SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04) :2352-2382
[9]   Fast Solvers for Cahn-Hilliard Inpainting [J].
Bosch, Jessica ;
Kay, David ;
Stoll, Martin ;
Wathen, Andrew J. .
SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (01) :67-97
[10]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267