Crack on the boundary of a thin elastic inclusion inside an elastic body

被引:30
作者
Khludnev, A. [1 ]
Negri, M. [2 ]
机构
[1] Russian Acad Sci, MA Lavrentyev Hydrodynam Inst, Novosibirsk 630090, Russia
[2] Univ Pavia, Dept Math, I-27100 Pavia, Italy
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2012年 / 92卷 / 05期
关键词
Crack; thin inclusion; non-linear boundary conditions; non-penetration; variational inequality;
D O I
10.1002/zamm.201100137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a model for a 2D elastic body with a thin elastic inclusion in which delamination of the inclusion may take place, thus forming a crack. Non-linear boundary conditions at the crack faces are imposed to prevent mutual penetration. We prove existence and uniqueness of the equilibrium configuration, considering both the variational and the differential formulations. Moreover, we study the dependence of solutions on the rigidity of the beam and we prove that in the limit corresponding to infinite and zero rigidity, we recover the case of a semi-rigid inclusion and the case of a crack with non-penetration conditions, respectively. The convergence of solutions is proved both using variational inequalities and G-convergence.
引用
收藏
页码:341 / 354
页数:14
相关论文
共 15 条
  • [1] Braides A., 2002, G CONVERGENCE BEGINN
  • [2] Dal Maso Gianni, 2012, An introduction to Gamma-convergence, V8
  • [3] GRISVARD P, 1991, SINGULARITIES BOUNDA
  • [4] On elastic bodies with thin rigid inclusions and cracks
    Khludnev, Alexander
    Leugering, Guenter
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (16) : 1955 - 1967
  • [5] Optimal control of cracks in elastic bodies with thin rigid inclusions
    Khludnev, Alexander M.
    Leugering, Guenter
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (02): : 125 - 137
  • [6] Khludnev AM, 2010, IZVESTIYA RAS MECH S, V5, P98
  • [7] Khludnev AM., 2000, ANAL CRACKS SOLIDS
  • [8] Khludnev AM., 2010, Elasticity problems in non-smooth domains
  • [9] ON STRESS SINGULARITIES NEAR THE BOUNDARY OF A POLYGONAL CRACK
    KOZLOV, VA
    MAZYA, VG
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1991, 117 : 31 - 37
  • [10] Morozov N. F., 1984, MATH QUESTIONS CRACK