The Noise-Induced Chaotic Transition in a Vibro-Impact Oscillator

被引:2
作者
Feng, Jinqian [1 ]
Wang, Tao [2 ]
Xu, Wei [3 ]
机构
[1] Xian Polytech Univ, Sch Sci, 19 S Jinhua Rd, Xian 710048, Peoples R China
[2] Changzhou Coll Informat Technol, Inst Elect & Elect, Changzhou 213164, Peoples R China
[3] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
来源
MATERIALS AND COMPUTATIONAL MECHANICS, PTS 1-3 | 2012年 / 117-119卷
基金
中国国家自然科学基金;
关键词
Vibro-Impact Oscillator; Chaotic Transition; Noise; Interpolation Method; GRAZING BIFURCATIONS; SYSTEM;
D O I
10.4028/www.scientific.net/AMM.117-119.347
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influences of noise on chaotic dynamics in a vibro-impact oscillator, modeled as Duffing Van der Pol (DVP) system with unilateral rigid barrier, are investigated. An interpolation strategy is introduced to locate the impact instants, and effective numerical method is proposed to improve the computational precision in the vibro-impact oscillator. Near the boundary crisis, the phenomenon of noise-induced chaotic transition occurs. Our studies reveal that the escape of oscillator from the boundary is responsible for this chaotic transition. The increase of noise can aggravate this escape.
引用
收藏
页码:347 / +
页数:2
相关论文
共 50 条
[31]   Vibro-impact dynamics of large-scale geared systems [J].
Melot, Adrien ;
Perret-Liaudet, Joel ;
Rigaud, Emmanuel .
NONLINEAR DYNAMICS, 2023, 111 (06) :4959-4976
[32]   Vibro-impact nonlinear energy sink dynamics in a harmonically excited weakly coupled two-degree-of-freedom linear oscillator [J].
Fang, Bin ;
Wang, Yi-Chen ;
Mao, Guo-Xin ;
Wang, Wei .
CHAOS SOLITONS & FRACTALS, 2025, 199
[33]   Experimental investigation and analytical description of a vibro-impact NES coupled to a single-degree-of-freedom linear oscillator harmonically forced [J].
Pennisi, Giuseppe ;
Stephan, Cyrille ;
Gourc, Etienne ;
Michon, Guilhem .
NONLINEAR DYNAMICS, 2017, 88 (03) :1769-1784
[34]   Modelling of a vibro-impact self-propelled capsule in the small intestine [J].
Yan, Yao ;
Liu, Yang ;
Manfredi, Luigi ;
Prasad, Shyam .
NONLINEAR DYNAMICS, 2019, 96 (01) :123-144
[35]   Levy noise-induced transition and stochastic resonance in a tumor growth model [J].
Guo, Yongfeng ;
Yao, Ting ;
Wang, Linjie ;
Tan, Jianguo .
APPLIED MATHEMATICAL MODELLING, 2021, 94 :506-515
[36]   Probabilistic responses of three-dimensional stochastic vibro-impact systems [J].
Ma, Shichao ;
Wang, Liang ;
Ning, Xin ;
Yue, Xiaole ;
Xu, Wei .
CHAOS SOLITONS & FRACTALS, 2019, 126 :308-314
[37]   Design criteria for optimally tuned vibro-impact nonlinear energy sink [J].
Qiu, D. ;
Seguy, S. ;
Paredes, M. .
JOURNAL OF SOUND AND VIBRATION, 2019, 442 :497-513
[38]   Non-Linear Modeling of a Vibro-Impact Wave Energy Converter [J].
Guo, Bingyong ;
Ringwood, John, V .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (01) :492-500
[39]   Suppressing homoclinic chaos for a class of vibro-impact oscillators by non-harmonic periodic excitations [J].
Li, Shuangbao ;
Xu, Rui ;
Kou, Liying .
NONLINEAR DYNAMICS, 2024, 112 (13) :10845-10870
[40]   How internal vibro-impact nonlinearities yield enhanced vibration mitigation [J].
Gzal, Majdi O. ;
Gendelman, Oleg V. ;
Bergman, Lawrence A. ;
Vakakis, Alexander F. .
NONLINEAR DYNAMICS, 2024, 112 (20) :17683-17708