On the regularity of harmonic functions and spherical harmonic maps defined on lattices

被引:1
作者
Thomas, LE [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
关键词
harmonic functions; harmonic maps; difference equations; elliptic regularity; growth lemma; sigma-models;
D O I
10.1006/jmaa.2001.7575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A growth lemma for certain discrete symmetric Laplacians defined on a lattice Z(delta)(d) = deltaZ(d) subset of R-d with spacing delta is proved. The lemma implies a De Giorgi theorem rem, that the harmonic functions for these Laplacians are equi-Holder continuous, delta --> 0. These results are then applied to establish regularity properties for the harmonic maps defined on Z(delta)(d) and taking values in an n-dimensional sphere S', uniform in delta. Questions of the convergence delta --> 0 and the Dirichlet problem for these discrete harmonic maps are also addressed. (C) 2001 Academic Press.
引用
收藏
页码:633 / 650
页数:18
相关论文
共 25 条
[11]  
Lieb E., 1997, ANALYSIS
[12]  
MERKOV AB, 1986, MATH USSR SB, V55, P493
[14]   CONTINUITY OF SOLUTIONS OF PARABOLIC AND ELLIPTIC EQUATIONS [J].
NASH, J .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (04) :931-954
[15]   REGULARITY OF MINIMIZING HARMONIC MAPS INTO THE SPHERE [J].
SCHOEN, R ;
UHLENBECK, K .
INVENTIONES MATHEMATICAE, 1984, 78 (01) :89-100
[16]  
SCHOEN R, 1983, J DIFFER GEOM, V18, P253
[17]  
SCHOEN R, 1983, J DIFFER GEOM, V18, P329
[18]  
SCHOEN R, 1983, MATH SCI RES I PUBL, V2, P321
[19]  
Strang G., 1973, ANAL FINITE ELEMENT, P318
[20]  
[No title captured]