On the regularity of harmonic functions and spherical harmonic maps defined on lattices

被引:1
作者
Thomas, LE [1 ]
机构
[1] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
关键词
harmonic functions; harmonic maps; difference equations; elliptic regularity; growth lemma; sigma-models;
D O I
10.1006/jmaa.2001.7575
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A growth lemma for certain discrete symmetric Laplacians defined on a lattice Z(delta)(d) = deltaZ(d) subset of R-d with spacing delta is proved. The lemma implies a De Giorgi theorem rem, that the harmonic functions for these Laplacians are equi-Holder continuous, delta --> 0. These results are then applied to establish regularity properties for the harmonic maps defined on Z(delta)(d) and taking values in an n-dimensional sphere S', uniform in delta. Questions of the convergence delta --> 0 and the Dirichlet problem for these discrete harmonic maps are also addressed. (C) 2001 Academic Press.
引用
收藏
页码:633 / 650
页数:18
相关论文
共 25 条
[1]   ANALYTICITY OF SOLUTIONS OF THE 0(N) NON-LINEAR SIGMA-MODEL [J].
BORCHERS, HJ ;
GARBER, WD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 71 (03) :299-309
[2]  
EELLS J, 1993, ANN MATH STUD, P1
[3]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[5]  
GILBARG D, 1980, ARCH RATION MECH AN, V74, P297
[6]  
Giorgi E. De., 1957, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Math. Nat., V3, P25
[7]   THE INVERSE FUNCTION THEOREM OF NASH AND MOSER [J].
HAMILTON, RS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (01) :65-222
[8]   Singularities of harmonic maps [J].
Hardt, RM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 34 (01) :15-34
[9]   EXISTENCE THEOREM FOR HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS [J].
HILDEBRANDT, S ;
KAUL, H ;
WIDMAN, KO .
ACTA MATHEMATICA, 1977, 138 (1-2) :1-16
[10]   Positive difference operators on general meshes [J].
Kuo, HJ ;
Trudinger, NS .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (02) :415-433