The 2022 magneto-optics roadmap

被引:76
作者
Kimel, Alexey [1 ]
Zvezdin, Anatoly [2 ]
Sharma, Sangeeta [3 ]
Shallcross, Samuel [3 ]
de Sousa, Nuno [4 ]
Garcia-Martin, Antonio [5 ]
Salvan, Georgeta [6 ]
Hamrle, Jaroslav [7 ]
Stejskal, Ondrej [7 ]
McCord, Jeffrey [8 ]
Tacchi, Silvia [9 ]
Carlotti, Giovanni [10 ]
Gambardella, Pietro [11 ]
Salis, Gian [12 ]
Muenzenberg, Markus [13 ]
Schultze, Martin [14 ]
Temnov, Vasily [15 ]
Bychkov, Igor, V [16 ]
Kotov, Leonid N. [17 ]
Maccaferri, Nicolo [18 ,19 ]
Ignatyeva, Daria [20 ,21 ,22 ]
Belotelov, Vladimir [20 ,21 ,22 ]
Donnelly, Claire [23 ]
Rodriguez, Aurelio Hierro [24 ,25 ]
Matsuda, Iwao [26 ]
Ruchon, Thierry [27 ]
Fanciulli, Mauro [28 ,29 ]
Sacchi, Maurizio [30 ]
Du, Chunhui Rita [31 ,32 ]
Wang, Hailong [32 ]
Armitage, N. Peter [33 ]
Schubert, Mathias [34 ,35 ]
Darakchieva, Vanya [35 ,36 ]
Liu, Bilu [37 ,38 ]
Huang, Ziyang [37 ,38 ]
Ding, Baofu [37 ,38 ,39 ]
Berger, Andreas [40 ]
Vavassori, Paolo [40 ,41 ]
机构
[1] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[2] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow 119991, Russia
[3] Max Born Inst Nichtlineare Opt & Kurzzeitspektros, D-12489 Berlin, Germany
[4] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[5] CEI UAM CSIC, CSIC, Inst Micro Nanotecnol IMN CNM, Isaac Newton 8, E-28760 Madrid, Spain
[6] Tech Univ Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
[7] Charles Univ Prague, Inst Phys, Ke Karlovu 5, Prague 12116, Czech Republic
[8] Univ Kiel, Inst Mat Sci, Kaiserstr 2, D-24143 Kiel, Germany
[9] Univ Perugia, Ist Officina Mat CNR CNR IOM, Sede Secondaria Perugia, Dipartimento Fis & Geol, I-06123 Perugia, Italy
[10] Univ Perugia, Dipartimento Fis & Geol, I-06123 Perugia, Italy
[11] Swiss Fed Inst Technol, Dept Mat, Honggerbergring 64, CH-8093 Zurich, Switzerland
[12] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[13] Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany
[14] Graz Univ Technol, Inst Expt Phys, Petersgasse 16, A-8010 Graz, Austria
[15] CNRS, Inst Polytech Paris, Ecole Polytech, CEA DRF IRAMIS,LSI, F-91128 Palaiseau, France
[16] Chelyabinsk State Univ, Dept Radiophys & Elect, Chelyabinsk 454001, Russia
[17] Syktyvkar State Univ, Syktyvkar 167000, Russia
[18] Umea Univ, Dept Phys, Linnaeus vag 24, S-90187 Umea, Sweden
[19] Univ Luxembourg, Dept Phys & Mat Sci, 162a ave Faiencerie, L-1511 Luxembourg, Luxembourg
[20] Russian Quantum Ctr, Moscow 121353, Russia
[21] VI Vernadsky Crimean Fed Univ, Simferopol 295007, Russia
[22] Lomonosov Moscow State Univ, Fac Phys, Moscow 119991, Russia
[23] Max Planck Inst Chem Phys Solids, Noethnitzer Str 40, D-01187 Dresden, Germany
[24] Univ Oviedo, Dept Fis, Oviedo 33007, Spain
[25] Univ Oviedo, CINN CSIC, El Entrego, Spain
[26] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[27] Univ Paris Saclay, CNRS, CEA, LIDYL, F-91191 Gif sur Yvette, France
[28] CY Cergy Paris Univ, LPMS, Cergy Pontoise, France
[29] Sorbonne Univ, Inst NanoSci Paris, CNRS, INSP, F-75005 Paris, France
[30] Synchrotron SOLEIL, BP 48, F-91192 Gif sur Yvette, France
[31] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[32] Univ Calif San Diego, Ctr Memory & Recording Res, La Jolla, CA 92093 USA
[33] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21210 USA
[34] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
[35] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
[36] Lund Univ, NanoLund, SE-22100 Lund, Sweden
[37] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518055, Peoples R China
[38] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[39] Chinese Acad Sci, Shenzhen Inst Adv Technol, Fac Mat Sci & Engn, Inst Technol Carbon Neutral, Shenzhen 518055, Peoples R China
[40] CIC nanoGUNE BRTA, Tolosa Hiribidea 76, Donostia San Sebastian, Spain
[41] IKERBASQUE, Basque Fdn Sci, Plaza Euskadi 5, Bilbao 48009, Spain
基金
俄罗斯科学基金会; 瑞典研究理事会; 瑞士国家科学基金会; 美国国家科学基金会; 中国国家自然科学基金; 欧盟地平线“2020”;
关键词
magneto-optics; magnetic characterization methods; magneto-optical effects; magnetic materials; modern experimental methods; theoretical description and modelling; magnetic microscopy; ROOM-TEMPERATURE; 2D MATERIALS; MAGNETIZATION; SPECTROSCOPY; MAGNETISM; ENHANCEMENT; VECTOR; PERMITTIVITY; ELLIPSOMETRY; CRYSTALS;
D O I
10.1088/1361-6463/ac8da0
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magneto-optical (MO) effects, viz. magnetically induced changes in light intensity or polarization upon reflection from or transmission through a magnetic sample, were discovered over a century and a half ago. Initially they played a crucially relevant role in unveiling the fundamentals of electromagnetism and quantum mechanics. A more broad-based relevance and wide-spread use of MO methods, however, remained quite limited until the 1960s due to a lack of suitable, reliable and easy-to-operate light sources. The advent of Laser technology and the availability of other novel light sources led to an enormous expansion of MO measurement techniques and applications that continues to this day (see section 1). The here-assembled roadmap article is intended to provide a meaningful survey over many of the most relevant recent developments, advances, and emerging research directions in a rather condensed form, so that readers can easily access a significant overview about this very dynamic research field. While light source technology and other experimental developments were crucial in the establishment of today's magneto-optics, progress also relies on an ever-increasing theoretical understanding of MO effects from a quantum mechanical perspective (see section 2), as well as using electromagnetic theory and modelling approaches (see section 3) to enable quantitatively reliable predictions for ever more complex materials, metamaterials, and device geometries. The latest advances in established MO methodologies and especially the utilization of the MO Kerr effect (MOKE) are presented in sections 4 (MOKE spectroscopy), 5 (higher order MOKE effects), 6 (MOKE microscopy), 8 (high sensitivity MOKE), 9 (generalized MO ellipsometry), and 20 (Cotton-Mouton effect in two-dimensional materials). In addition, MO effects are now being investigated and utilized in spectral ranges, to which they originally seemed completely foreign, as those of synchrotron radiation x-rays (see section 14 on three-dimensional magnetic characterization and section 16 on light beams carrying orbital angular momentum) and, very recently, the terahertz (THz) regime (see section 18 on THz MOKE and section 19 on THz ellipsometry for electron paramagnetic resonance detection). Magneto-optics also demonstrates its strength in a unique way when combined with femtosecond laser pulses (see section 10 on ultrafast MOKE and section 15 on magneto-optics using x-ray free electron lasers), facilitating the very active field of time-resolved MO spectroscopy that enables investigations of phenomena like spin relaxation of non-equilibrium photoexcited carriers, transient modifications of ferromagnetic order, and photo-induced dynamic phase transitions, to name a few. Recent progress in nanoscience and nanotechnology, which is intimately linked to the achieved impressive ability to reliably fabricate materials and functional structures at the nanoscale, now enables the exploitation of strongly enhanced MO effects induced by light-matter interaction at the nanoscale (see section 12 on magnetoplasmonics and section 13 on MO metasurfaces). MO effects are also at the very heart of powerful magnetic characterization techniques like Brillouin light scattering and time-resolved pump-probe measurements for the study of spin waves (see section 7), their interactions with acoustic waves (see section 11), and ultra-sensitive magnetic field sensing applications based on nitrogen-vacancy centres in diamond (see section 17). Despite our best attempt to represent the field of magneto-optics accurately and do justice to all its novel developments and its diversity, the research area is so extensive and active that there remains great latitude in deciding what to include in an article of this sort, which in turn means that some areas might not be adequately represented here. However, we feel that the 20 sections that form this 2022 magneto-optics roadmap article, each written by experts in the field and addressing a specific subject on only two pages, provide an accurate snapshot of where this research field stands today. Correspondingly, it should act as a valuable reference point and guideline for emerging research directions in modern magneto-optics, as well as illustrate the directions this research field might take in the foreseeable future.
引用
收藏
页数:64
相关论文
共 277 条
[1]   Active angular tuning and switching of Brewster quasi bound states in the continuum in magneto-optic metasurfaces [J].
Abujetas, Diego R. ;
de Sousa, Nuno ;
Garcia-Martin, Antonio ;
Llorens, Jose M. ;
Sanchez-Gil, Jose A. .
NANOPHOTONICS, 2021, 10 (17) :4223-4232
[2]   Current-Controlled Spin Precession of Quasistationary Electrons in a Cubic Spin-Orbit Field [J].
Altmann, P. ;
Hernandez, F. G. G. ;
Ferreira, G. J. ;
Kohda, M. ;
Reichl, C. ;
Wegscheider, W. ;
Salis, G. .
PHYSICAL REVIEW LETTERS, 2016, 116 (19)
[3]   Constraints on Jones transmission matrices from time-reversal invariance and discrete spatial symmetries [J].
Armitage, N. P. .
PHYSICAL REVIEW B, 2014, 90 (03)
[4]   Strain-induced magneto-optical anisotropy in epitaxial hcp Co films [J].
Arregi, J. A. ;
Gonzalez-Diaz, J. B. ;
Idigoras, O. ;
Berger, A. .
PHYSICAL REVIEW B, 2015, 92 (18)
[5]   Study of generalized magneto-optical ellipsometry measurement reliability [J].
Arregi, J. A. ;
Gonzalez-Diaz, J. B. ;
Bergaretxe, E. ;
Idigoras, O. ;
Unsal, T. ;
Berger, A. .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (10)
[6]   Low-Mass Dark Matter Search with the DarkSide-50 Experiment [J].
Agnes, P. ;
Albuquerque, I. F. M. ;
Alexander, T. ;
Alton, A. K. ;
Araujo, G. R. ;
Asner, D. M. ;
Ave, M. ;
Back, H. O. ;
Baldin, B. ;
Batignani, G. ;
Biery, K. ;
Bocci, V. ;
Bonfini, G. ;
Bonivento, W. ;
Bottino, B. ;
Budano, F. ;
Bussino, S. ;
Cadeddu, M. ;
Cadoni, M. ;
Calaprice, F. ;
Caminata, A. ;
Canci, N. ;
Candela, A. ;
Caravati, M. ;
Cariello, M. ;
Carlini, M. ;
Carpinelli, M. ;
Catalanotti, S. ;
Cataudella, V. ;
Cavalcante, P. ;
Cavuoti, S. ;
Cereseto, R. ;
Chepurnov, A. ;
Cicalo, C. ;
Cifarelli, L. ;
Cocco, A. G. ;
Covone, G. ;
D'Angelo, D. ;
D'Incecco, M. ;
D'Urso, D. ;
Davini, S. ;
De Candia, A. ;
De Cecco, S. ;
De Deo, M. ;
De Filippis, G. ;
De Rosa, G. ;
De Vincenzi, M. ;
Demontis, P. ;
Derbin, A. V. ;
Devoto, A. .
PHYSICAL REVIEW LETTERS, 2018, 121 (08)
[7]   Quantum Engineering With Hybrid Magnonic Systems and Materials (Invited Paper) [J].
Awschalom, David D. ;
Du, Chunhui Rita ;
He, Rui ;
Heremans, F. Joseph ;
Hoffmann, Axel ;
Hou, Justin ;
Kurebayashi, Hidekazu ;
Li, Yi ;
Liu, Luqiao ;
Novosad, Valentine ;
Sklenar, Joseph ;
Sullivan, Sean E. ;
Sun, Dali ;
Tang, Hong ;
Tyberkevych, Vasyl ;
Trevillian, Cody ;
Tsen, Adam W. ;
Weiss, Leah R. ;
Zhang, Wei ;
Zhang, Xufeng ;
Zhao, Liuyan ;
Zollitsch, Ch. W. .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2021, 2
[8]   Quantum technologies with optically interfaced solid-state spins [J].
Awschalom, David D. ;
Hanson, Ronald ;
Wrachtrup, Joerg ;
Zhou, Brian B. .
NATURE PHOTONICS, 2018, 12 (09) :516-527
[9]   The 2020 skyrmionics roadmap [J].
Back, C. ;
Cros, V ;
Ebert, H. ;
Everschor-Sitte, K. ;
Fert, A. ;
Garst, M. ;
Ma, Tianping ;
Mankovsky, S. ;
Monchesky, T. L. ;
Mostovoy, M. ;
Nagaosa, N. ;
Parkin, S. S. P. ;
Pfleiderer, C. ;
Reyren, N. ;
Rosch, A. ;
Taguchi, Y. ;
Tokura, Y. ;
von Bergmann, K. ;
Zang, Jiadong .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (36)
[10]   Polarization conversion in resonant magneto-optic gratings [J].
Bai, Benfeng ;
Tervo, Jani ;
Turunen, Jari .
NEW JOURNAL OF PHYSICS, 2006, 8